scholarly journals Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5484
Author(s):  
Serena Castelli ◽  
Pamela De De Falco ◽  
Fabio Ciccarone ◽  
Enrico Desideri ◽  
Maria Rosa Ciriolo

Although cancer cell metabolism was mainly considered to rely on glycolysis, with the concomitant impairment of mitochondrial metabolism, it has recently been demonstrated that several tumor types are sustained by oxidative phosphorylation (OXPHOS). In this context, endogenous fatty acids (FAs) deriving from lipolysis or lipophagy are oxidised into the mitochondrion, and are used as a source of energy through OXPHOS. Because the electron transport chain is the main source of ROS, cancer cells relying on fatty acid oxidation (FAO) need to be equipped with antioxidant systems that maintain the ROS levels under the death threshold. In those conditions, ROS can act as second messengers, favouring proliferation and survival. Herein, we highlight the different responses that tumor cells adopt when lipid catabolism is augmented, taking into account the different ROS fates. Many papers have demonstrated that the pro- or anti-tumoral roles of endogenous FA usage are hugely dependent on the tumor type, and on the capacity of cancer cells to maintain redox homeostasis. In light of this, clinical studies have taken advantage of the boosting of lipid catabolism to increase the efficacy of tumor therapy, whereas, in other contexts, antioxidant compounds are useful to reduce the pro-survival effects of ROS deriving from FAO.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii220-ii220
Author(s):  
Chenran Wang ◽  
Michael Haas ◽  
Syn Yeo ◽  
Ritama Paul ◽  
Fuchun Yang ◽  
...  

Abstract Activation of mTORC1 plays a significant role in cancer development and progression. However, the metabolic mechanisms to sustain mTORC1 activation in stressed cancer cells are still underappreciated. Autophagy, one downstream process of mTORC1, is proposed to be suppressed under the condition of mTORC1 hyper-activation. Interestingly, we recently revealed higher autophagy activity in various Tsc-deficient tumor cells with mTORC1 hyper-activity. Nevertheless, the functions and mechanisms of autophagy in regulating mTORC1 in cancer cells are not well understood. In this study, we revealed a strong association of altered mRNA levels in mTORC1 upstream and downstream genes with poor prognosis of glioma patients. Our metabolic and molecular studies indicated that autophagy mediated lipid catabolism was essential to sustain mTORC1 activity in glioma cells under energy stresses. We found that autophagy inhibitors or fatty acid oxidation (FAO) inhibition in combination with 2-Deoxy-D-glucose (2DG) decreased oxidative phosphorylation, ATP production, mTORC1 activity, and survival of glioma cells in vitro. Consistently, the combination of chloroquine (CQ) or FAO inhibitors with 2DG effectively suppressed the progression of xenografted glioma with mTORC1 hyperactivation in mice. This study established a novel autophagy/lipid degradation/FAO/ATP pathway that maintains high mTORC1 signaling and tumor progression in brain cancer cells under energy stresses. The requirement of lipophagy in brain cancers may provide an opportunity to develop new molecular therapeutic targets to counteract mTORC1 for tumor progression.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1415 ◽  
Author(s):  
Sánchez-Álvarez ◽  
Strippoli ◽  
Donadelli ◽  
Bazhin ◽  
Cordani

: The regulation of Reactive Oxygen Species (ROS) levels and the contribution therein from networks regulating cell metabolism, such as autophagy and the mTOR-dependent nutrient-sensing pathway, constitute major targets for selective therapeutic intervention against several types of tumors, due to their extensive rewiring in cancer cells as compared to healthy cells. Here, we discuss the sestrin family of proteins—homeostatic transducers of oxidative stress, and drivers of antioxidant and metabolic adaptation—as emerging targets for pharmacological intervention. These adaptive regulators lie at the intersection of those two priority nodes of interest in antitumor intervention—ROS control and the regulation of cell metabolism and autophagy—therefore, they hold the potential not only for the development of completely novel compounds, but also for leveraging on synergistic strategies with current options for tumor therapy and classification/stadiation to achieve personalized medicine.


Open Biology ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 170219 ◽  
Author(s):  
Nihed Draoui ◽  
Pauline de Zeeuw ◽  
Peter Carmeliet

Endothelial cell (EC) metabolism has lately emerged as a novel and promising therapeutic target to block vascular dysregulation associated with diseases like cancer and blinding eye disease. Glycolysis, fatty acid oxidation (FAO) and, more recently, glutamine/asparagine metabolism emerged as key regulators of EC metabolism, able to impact angiogenesis in health and disease. ECs are highly glycolytic as they require ATP and biomass for vessel sprouting. Notably, a regulator of the glycolytic pathway, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3, controls vessel sprouting during the angiogenic switch and its inhibition in tumour ECs leads to vessel normalization, thereby reducing metastasis and ameliorating chemotherapy. Moreover, FAO promotes EC proliferation through DNA synthesis, and plays an essential role in lymphangiogenesis via epigenetic regulation of histone acetylation. Pathological angiogenesis was decreased upon blockade of carnitine palmitoyltransferase 1, a regulator of FAO in ECs. More recently, metabolism of glutamine, in conjunction with asparagine, was reported to maintain EC sprouting through TCA anaplerosis, redox homeostasis, mTOR activation and endoplasmic stress control. Inactivation or blockade of glutaminase 1, which hydrolyses glutamine into ammonia and glutamate, impairs angiogenesis in health and disease, while silencing of asparagine synthetase reduces vessel sprouting in vitro . In this review, we summarize recent insights into EC metabolism and discuss therapeutic implications of targeting EC metabolism.


1996 ◽  
Vol 134 (3) ◽  
pp. 272-286 ◽  
Author(s):  
Marc Prentki

Prentki M. New insights into pancreatic β-cell metabolic signaling in insulin secretion. Eur J Endocrinol 1996;134:272–86. ISSN 0804–4643 In recent years, it has become apparent that second messengers and factors other than ATP, metabolically sensitive KATP+ channels and Ca2+ play essential roles in nutrient-induced insulin release. This paper reviews the evidence in support of several new concepts and hypotheses in the field of β-cell signaling. These include in particular that: a rise in cytosolic Ca2+ is not sufficient to explain the kinetics and extent of secretion induced by glucose: variations in ADP, rather than ATP, regulate β-cell metabolism and the KATP+ channel; anaplerosis (the replenishment of the citric acid cycle with intermediates) is essential for β-cell activation; a shift from fatty acid oxidation to esterification is an important event in β-cell signaling; malonyl-CoA and long chain acyl-CoA esters may act as metabolic coupling factors; glycolytic oscillations underlie, in part, oscillations in electrical activity, cytosolic Ca2+ and insulin release. A metabolic model of fuel sensing that integrates the mode of action of all classes of nutrient secretagogues is proposed. Marc Prentki, Department of Nutrition, University of Montreal, CP6128, Succ, Centre-Ville, Montreal, PQ H3C3J7, Canada


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomoyuki Murakami

AbstractA biochemical reaction model clarifies for the first time how cold atmospheric plasmas (CAPs) affect mitochondrial redox homeostasis and energy metabolism. Fundamental mitochondrial functions in pyruvic acid oxidation, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation involving the respiratory chain (RC), adenosine triphosphate/adenosine diphosphate (ATP/ADP) synthesis machinery and reactive oxygen species/reactive nitrogen species (ROS/RNS)-mediated mechanisms are numerically simulated. The effects of CAP irradiation are modelled as 1) the influx of hydrogen peroxide (H$${}_{2}$$2O$${}_{2}$$2) to an ROS regulation system and 2) the change in mitochondrial transmembrane potential induced by RNS on membrane permeability. The CAP-induced stress modifies the dynamics of intramitochondrial H$${}_{2}$$2O$${}_{2}$$2 and superoxide anions, i.e., the rhythm and shape of ROS oscillation are disturbed by H$${}_{2}$$2O$${}_{2}$$2 infusion. Furthermore, CAPs control the ROS oscillatory behaviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through the reaction mixture over the RC, the TCA cycle and ROS regulation system. CAPs even induce a homeostatic or irreversible state transition in cell metabolism. The present computational model demonstrates that CAPs crucially affect essential mitochondrial functions, which in turn affect redox signalling, metabolic cooporation and cell fate decision of survival or death.


2018 ◽  
Vol 18 (10) ◽  
pp. 945-956 ◽  
Author(s):  
Mengting Ou ◽  
Shun Li ◽  
Liling Tang

PRDM14 belongs to the PR domain-containing (PRDM) family. Although a precise understanding focused on the function of PRDM14 to maintain stemness and pluripotency in embryonic stem cells via epigenetic mechanisms, growing experimental evidence has been linked PRDM14 to human cancers. In adults, PRDM14 has low expression in human tissues. Aberrant PRDM14 expression is connected with various malignant histological types and solid cancers, where PRDM14 can act as a driver of oncogenic processes. Overexpression of RPDM14 enhanced cancer cells growth and reduced cancer cells sensitive to chemotherapeutic agents. Reducing the expression of PRDM14 in cancer cells can enhance the therapeutic sensitivity of drugs to cancer cells, suggesting that aberrant PRDM14 may have a carcinogenic characteristic in tumor therapy and as a new molecular target. This review summarizes the structure and oncogenic properties of PRDM14 in different malignancies and suggests that PRDM14 may be a potential therapeutic molecular target for tumor treatment.


Author(s):  
Menghan Gao ◽  
Hong Deng ◽  
Weiqi Zhang

: Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44- targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat the cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progresses about HA-based multidrug nano-carriers for combination cancer therapy are summarized and its potential challenges for translational applications have been discussed.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Nada S. Aboelella ◽  
Caitlin Brandle ◽  
Timothy Kim ◽  
Zhi-Chun Ding ◽  
Gang Zhou

It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Trëndelina Rrustemi ◽  
Öykü Gönül Geyik ◽  
Ali Burak Özkaya ◽  
Taylan Kurtuluş Öztürk ◽  
Zeynep Yüce ◽  
...  

AbstractObjectivesCancer cells modulate metabolic pathways to ensure continuity of energy, macromolecules and redox- homeostasis. Although these vulnerabilities are often targeted individually, targeting all with an enzyme may prove a novel approach. However, therapeutic enzymes are prone to proteolytic degradation and neutralizing antibodies leading to a reduced half-life and effectiveness. We hypothesized that glucose oxidase (GOX) enzyme that catalyzes oxidation of glucose and production of hydrogen peroxide, may hit all these targets by depleting glucose; crippling anabolic pathways and producing reactive oxygen species (ROS); unbalancing redox homeostasis.MethodsWe encapsulated GOX in an acrylamide layer and then performed activity assays in denaturizing settings to determine protection provided by encapsulation. Afterwards, we tested the effects of encapsulated (enGOX) and free (fGOX) enzyme on MCF-7 breast cancer cells.ResultsGOX preserved 70% of its activity following encapsulation. When fGOX and enGOX treated with guanidinium chloride, fGOX lost approximately 72% of its activity, while enGOX only lost 30%. Both forms demonstrated remarkable resilience against degradation by proteinase K and inhibited viability of MCF-7 cells in an activity-dependent manner.ConclusionsEncapsulation provided protection to GOX against denaturation without reducing its activity, which would prolong half-life of the enzyme when administered intravenously.


2021 ◽  
Vol 22 (3) ◽  
pp. 1171
Author(s):  
Dexter L. Puckett ◽  
Mohammed Alquraishi ◽  
Winyoo Chowanadisai ◽  
Ahmed Bettaieb

Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.


Sign in / Sign up

Export Citation Format

Share Document