scholarly journals The Transcription Factor FEZF1, a Direct Target of EWSR1-FLI1 in Ewing Sarcoma Cells, Regulates the Expression of Neural-Specific Genes

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5668
Author(s):  
Laura García-García ◽  
Enrique Fernández-Tabanera ◽  
Saint T. Cervera ◽  
Raquel M. Melero-Fernández de Mera ◽  
Santiago Josa ◽  
...  

Ewing sarcoma is a rare pediatric tumor characterized by chromosomal translocations that give rise to aberrant chimeric transcription factors (e.g., EWSR1-FLI1). EWSR1-FLI1 promotes a specific cellular transcriptional program. Therefore, the study of EWSR1-FLI1 target genes is important to identify critical pathways involved in Ewing sarcoma tumorigenesis. In this work, we focused on the transcription factors regulated by EWSR1-FLI1 in Ewing sarcoma. Transcriptomic analysis of the Ewing sarcoma cell line A673 indicated that one of the genes more strongly upregulated by EWSR1-FLI1 was FEZF1 (FEZ family zinc finger protein 1), a transcriptional repressor involved in neural cell identity. The functional characterization of FEZF1 was performed in three Ewing sarcoma cell lines (A673, SK-N-MC, SK-ES-1) through an shRNA-directed silencing approach. FEZF1 knockdown inhibited clonogenicity and cell proliferation. Finally, the analysis of the FEZF1-dependent expression profile in A673 cells showed several neural genes regulated by FEZF1 and concomitantly regulated by EWSR1-FLI1. In summary, FEZF1 is transcriptionally regulated by EWSR1-FLI1 in Ewing sarcoma cells and is involved in the regulation of neural-specific genes, which could explain the neural-like phenotype observed in several Ewing sarcoma tumors and cell lines.

2021 ◽  
Author(s):  
Martin F. Orth ◽  
Didier Surdez ◽  
Aruna Marchetto ◽  
Sandrine Grossetete ◽  
Julia S. Gerke ◽  
...  

Cell lines have been essential for major discoveries in cancer including Ewing sarcoma (EwS). EwS is a highly aggressive pediatric bone or soft-tissue cancer characterized by oncogenic EWSR1-ETS fusion transcription factors converting polymorphic GGAA-microsatellites (mSats) into neo-enhancers. However, further detailed mechanistic evaluation of gene regulation in EwS have been hindered by the limited number of well-characterized cell line models. Here, we present the Ewing Sarcoma Cell Line Atlas (ESCLA) comprising 18 EwS cell lines with inducible EWSR1-ETS knockdown that were profiled by whole-genome-sequencing, DNA methylation arrays, gene expression and splicing arrays, mass spectrometry-based proteomics, and ChIP-seq for EWSR1-ETS and histone marks. Systematic analysis of these multi-dimensional data illuminated hundreds of new potential EWSR1-ETS target genes, the nature of EWSR1-ETS-preferred GGAA-mSats, and potential indirect modes of EWSR1-ETS-mediated gene regulation. Moreover, we identified putative co-regulatory transcription factors and heterogeneously regulated EWSR1-ETS target genes that may have implications for the clinical heterogeneity of EwS. Collectively, our freely available ESCLA constitutes an extremely rich resource for EwS research and highlights the power of leveraging multidimensional and comprehensive datasets to unravel principles of heterogeneous gene regulation by dominant fusion oncogenes.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1258
Author(s):  
Tetsuya Sekita ◽  
Tesshi Yamada ◽  
Eisuke Kobayashi ◽  
Akihiko Yoshida ◽  
Toru Hirozane ◽  
...  

Background: The treatment of patients with metastatic synovial sarcoma is still challenging, and the development of new molecular therapeutics is desirable. Dysregulation of Wnt signaling has been implicated in synovial sarcoma. Traf2-and-Nck-interacting kinase (TNIK) is an essential transcriptional co-regulator of Wnt target genes. We examined the efficacy of a small interfering RNA (siRNA) to TNIK and a small-molecule TNIK inhibitor, NCB-0846, for synovial sarcoma. Methods: The expression of TNIK was determined in 20 clinical samples of synovial sarcoma. The efficacy of NCB-0846 was evaluated in four synovial sarcoma cell lines and a mouse xenograft model. Results: We found that synovial sarcoma cell lines with Wnt activation were highly dependent upon the expression of TNIK for proliferation and survival. NCB-0846 induced apoptotic cell death in synovial sarcoma cells through blocking of Wnt target genes including MYC, and oral administration of NCB-846 induced regression of xenografts established by inoculation of synovial sarcoma cells. Discussion: It has become evident that activation of Wnt signaling is causatively involved in the pathogenesis of synovial sarcoma, but no molecular therapeutics targeting the pathway have been approved. This study revealed for the first time the therapeutic potential of TNIK inhibition in synovial sarcoma.


2021 ◽  
Author(s):  
Iftekhar A Showpnil ◽  
Julia Selich-Anderson ◽  
Cenny Taslim ◽  
Megann A Boone ◽  
Jesse C Crow ◽  
...  

Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or highly related fusions. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. EWS/FLI binding is primarily associated with compartment activation, establishment of topologically-associated domain (TAD) boundaries, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genomewide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators through three-dimensional reprogramming of chromatin.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Torin Waters ◽  
Kelli L. Goss ◽  
Stacia L. Koppenhafer ◽  
William W. Terry ◽  
David J. Gordon

Abstract Background The treatment of Ewing sarcoma, an aggressive bone and soft tissue sarcoma, is associated with suboptimal outcomes and significant side-effects. Consequently, there is an urgent need to identify novel therapies that will improve outcomes for children and adults with Ewing sarcoma tumors while also decreasing treatment-related toxicities. Methods We analyzed data from the PRISM drug repurposing screen, which tested the activity of 4518 drugs across 578 cancer cell lines, to identify drugs that selectively inhibit the growth of Ewing sarcoma cell lines. We then tested the effects of a top hit from the screen on cell proliferation, cell cycle progression, and activation of the DNA damage pathway using Ewing sarcoma cell lines. We also used a CRISPR/Cas9 gene knockout approach to investigate the role of Schlafen 11 (SLFN11), a restriction factor for DNA replication stress that is overexpressed in Ewing sarcoma tumors, in mediating the sensitivity of Ewing sarcoma cells to the drug. Results We found that eltrombopag, an FDA-approved thrombopoietin-receptor agonist (TPO-RA) that is currently being evaluated as a treatment for chemotherapy-induced thrombocytopenia, inhibits the growth of Ewing sarcoma cell lines in vitro in proliferation and colony formation assays. However, from a mechanistic standpoint, the thrombopoietin receptor is not expressed in Ewing sarcoma cells and we show that eltrombopag impairs DNA replication and causes DNA damage in Ewing sarcoma cells by chelating iron, a known “off-target” effect of the drug. We also found that the sensitivity of Ewing sarcoma cells to eltrombopag is mediated, in part, by SLFN11, which regulates the cellular response to DNA replication stress. Conclusions Ewing sarcoma cell lines are sensitive to eltrombopag and this drug could improve outcomes for patients with Ewing sarcoma tumors by both targeting the tumor, via chelation of iron and inhibition of DNA replication, and reducing chemotherapy-induced thrombocytopenia, via stimulation of the thrombopoietin receptor.


2021 ◽  
Author(s):  
Sarah Grissenberger ◽  
Caterina Sturtzel ◽  
Andrea Wenninger-Weinzierl ◽  
Eva Scheuringer ◽  
Lisa Bierbaumer ◽  
...  

Ewing sarcoma is a pediatric bone and soft tissue cancer for which new therapies to improve disease outcome and to reduce adverse effects of current standard treatments are urgently needed. To identify new and effective drugs, phenotypic drug screening has proven to be a powerful method and a cancer model ideally suited for this approach is the larval zebrafish xenograft system. Complementing mouse xenografts, zebrafish offer high-througput screening possibilities in an intact complex vertebrate organism. Here, we generated Ewing sarcoma xenografts in zebrafish larvae and established a workflow for automated imaging of xenografts, tumor cell recognition within transplanted zebrafish and quantitative tumor size analysis over consecutive days by high-content imaging. The increased throughput of our in vivo screening setup allowed us to identify combination therapies effective against Ewing sarcoma cells. Especially, combined inhibition of MCL-1 and BCL-XL, two anti-apoptotic proteins, was highly efficient at eradicating tumor cells in our zebrafish xenograft assays with two Ewing sarcoma cell lines and with patient-derived cells. Transcriptional analysis across Ewing sarcoma cell lines and tumors revealed that MCL-1 and BCL2L1, coding for BCL-XL, are the most abundantly expressed anti-apoptotic genes, suggesting that combined MCL-1/BCL-XL inhibition might be a broadly applicable strategy for Ewing sarcoma treatment.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Javier Martin Broto ◽  
Katia Scotlandi ◽  
Michele Cavo ◽  
...  

BackgroundHigh-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma.MethodsThe human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed.ResultsAlong with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells.ConclusionsTaken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.


Sign in / Sign up

Export Citation Format

Share Document