scholarly journals Introduction of Mutant GNAQ into Endothelial Cells Induces a Vascular Malformation Phenotype with Therapeutic Response to Imatinib

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 413
Author(s):  
Maiko Sasaki ◽  
Yoonhee Jung ◽  
Paula North ◽  
Justin Elsey ◽  
Keith Choate ◽  
...  

GNAQ is mutated in vascular and melanocytic lesions, including vascular malformations and nevi. No in vivo model of GNAQ activation in endothelial cells has previously been described. We introduce mutant GNAQ into a murine endothelial cell line, MS1. The resultant transduced cells exhibit a novel phenotype in vivo, with extensive vasoformative endothelial cells forming aberrant lumens similar to those seen in vascular malformations. ATAC-seq analysis reveals activation of c-Kit in the novel vascular malformations. We demonstrate that c-Kit is expressed in authentic human Sturge–Weber vascular malformations, indicating a novel druggable target for Sturge–Weber syndrome. Since c-Kit is targeted by the FDA-approved drug imatinib, we tested the ability of imatinib on the phenotype of the vascular malformations in vivo. Imatinib treated vascular malformations are significantly smaller and have decreased supporting stromal cells surrounding the lumen. Imatinib may be useful in the treatment of human vascular malformations that express c-Kit, including Sturge–Weber syndrome.

2019 ◽  
Vol 20 (9) ◽  
pp. 2243 ◽  
Author(s):  
Vi Nguyen ◽  
Marcelo Hochman ◽  
Martin C. Mihm ◽  
J. Stuart Nelson ◽  
Wenbin Tan

Port wine stain (PWS) is a congenital vascular malformation involving human skin. Approximately 15–20% of children a facial PWS involving the ophthalmic (V1) trigeminal dermatome are at risk for Sturge Weber syndrome (SWS), a neurocutaneous disorder with vascular malformations in the cerebral cortex on the same side of the facial PWS lesions. Recently, evidence has surfaced that advanced our understanding of the pathogenesis of PWS/SWS, including discoveries of somatic genetic mutations (GNAQ, PI3K), MAPK and PI3K aberrant activations, and molecular phenotypes of PWS endothelial cells. In this review, we summarize current knowledge on the etiology and pathology of PWS/SWS based on evidence that the activation of MAPK and/or PI3K contributes to the malformations, as well as potential futuristic treatment approaches targeting these aberrantly dysregulated signaling pathways. Current data support that: (1) PWS is a multifactorial malformation involving the entire physiological structure of human skin; (2) PWS should be pathoanatomically re-defined as “a malformation resulting from differentiation-impaired endothelial cells with a progressive dilatation of immature venule-like vasculatures”; (3) dysregulation of vascular MAPK and/or PI3K signaling during human embryonic development plays a part in the pathogenesis and progression of PWS/SWS; and (4) sporadic low frequency somatic mutations, such as GNAQ, PI3K, work as team players but not as a lone wolf, contributing to the development of vascular phenotypes. We also address many crucial questions yet to be answered in the future research investigations.


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 673-684
Author(s):  
Marcia Riboldi ◽  
Ivonne Nazir ◽  
Belén Jara ◽  
Felipe Argandoña ◽  
Cecilia Valencia ◽  
...  

During embryo implantation, endometrial angiogenesis is regulated by signals originating from the endometrium itself and the developing embryo. It has been suggested that hCG may play a pro-angiogenic role; therefore, we sought to understand its regulatory role in blood vessel formation in human endometrium using in vivo and in vitro models. In the in vivo model, we screened 16 angiogenesis-related transcripts in the endometrium upon intrauterine administration of hCG. Oocyte donors were recruited and during their controlled ovarian stimulation cycle received a single dose of hCG or vehicle on the day of oocyte pick up during a cycle of ovarian stimulation. One hour before obtaining an endometrial sample, women received an intrauterine administration of vehicle or hCG (500, 1500 and 5000 IU). Transcript and protein analysis showed that MMP3 and VEGFA increased, whereas TIMP1 decreased. The in vitro analysis studied the angiogenic potential of conditioned medium (CM) from primary cultures of human endometrial stromal cells (ESC) stimulated with hCG. Using a 2D and 3D in vitro angiogenesis assays, our results indicate that CM from ESC almost completely inhibits the capillary-like structure formation in endothelial cells, overriding the pro-angiogenic effect of hCG; and this inhibition due to secreted factors present in CM specifically reduced the migration potential of endothelial cells. In conclusion, the endometrial stromal milieu seems to modulate the direct pro-angiogenic effects of hCG on endothelial cells during embryo implantation.


2021 ◽  
Vol 9 (3) ◽  
pp. e001803
Author(s):  
Louise M E Müller ◽  
Gemma Migneco ◽  
Gina B Scott ◽  
Jenny Down ◽  
Sancha King ◽  
...  

BackgroundMultiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported.MethodsThis study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment.ResultsUsing the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes.ConclusionThese data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Author(s):  
Debajit Ray ◽  
Anil K. Mandal ◽  
G. Chandrasekhar ◽  
Milind Naik ◽  
Niteen Dhepe

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunj. Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings: The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunja Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number not applicable


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dmitry O Traktuev ◽  
Daniel N Prater ◽  
Aravind R Sanjeevaiah ◽  
Stephanie Merfeld-Clauss ◽  
Brian H Johnstone ◽  
...  

Introduction Both Endothelial progenitor cells (EPC) and adipose stromal cells (ASC) are under investigation as therapies for cardiovascular diseases. Both cell types are capable of modulating vascular assembly and are, thereby, capable of directly promoting revascularization of ischemic tissues. We have shown that EPC differentiate into endothelial cells to form small vessels, whereas ASC have pericytic properties and naturally stabilize vessels. In this study we tested the possibility that ASC would interact with EPC to assemble de novo vessels in collagen in an in vivo chimeric implant. Methods and Results Collagen implants embedded with either umbilical cord blood EPC or adult ASC or a 4:1 mixture of both (2x10 6 cells/ml) were implanted subcutaneously into NOD/SCID mice. After 14 d implants were harvested and evaluated by immunohistochemistry. There was a pronounced difference among the groups in vascular network assembly. The majority of vessels formed in the EPC and ASC monocultures were small capillaries bounded by a single endothelial layer. Conversely, 100% of the plugs embedded with both cell types were highly invaded with multilayered arteriolar vessels. The density of the CD31 + vessels in the EPC and co-culture plugs was 26.6 ± 5.8 and 122.4 ± 9.8 per mm 2 , respectively. No CD31 + cells of human origin were detected in the ASC monocultures, indicating that ASC, which do not express this EC-specific marker, engage murine EC or form pseudovessels in this system. The density of α-SMA + vessels with lumens per mm 2 was 13.1 ± 3.6 (EPC), 10.2 ± 3.5 (ASC) and 124.7 ± 19.7 (co-culture). The total overlap of CD31 + and SMA + vessels demonstrates that mature, multilayered conduits were formed with the co-culture. Moreover, the majority of these vessels were filled with erythrocytes (92.5 ± 16.2 per mm 2 ), indicating inosculation with the native vasculature, which was confirmed by ultrasound with echogenic microbubbles and persisted to at least 4 months. Conclusion This study is the first to demonstrate that non-transformed human EPC and ASC cooperatively form mature and stable vasculature with subsequent functional integration into a host vasculature system.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3916-3916
Author(s):  
Olga Dashevsky ◽  
Alexander Brill ◽  
Julia Rivo ◽  
David Varon

Abstract Platelet attachment to the subcellular matrix at injured sites of the vasculature is followed by their activation and release of microparticles. Platelet-derived microparticles (PMP) have been shown to be involved in the regulation of hemostasis. However, little is known about the role of PMP in the regulation of angiogenesis and related clinical conditions. We have recently demonstrated that platelets as a cellular system induce angiogenic responses both in vitro and in vivo. In the present study, we investigated the potential role of PMP in angiogenesis. A strong dose-dependent pro-angiogenic effect of PMP in the rat aortic ring model (5.3±2.1 mm2 surface covered with sprouting vessels versus 0.24±0.2 mm2 in the control, p<0.001) was observed. This effect was reversed by selective inhibition of VEGF, bFGF and PDGF (surface covered with vessels 0.7±0.5 mm2, 1.7±1.5 mm2, and 2.4±1.2 mm2, respectively, p<0.02 versus control), but not by inhibition of heparanase (5.1±0.8 mm2, p>0.5 versus control). PMP exert their stimulatory effect via PI3-kinase, Src kinase and ERK, whereas protein kinase C seems not to be involved, as judged by the aortic ring sprouting model. Using confocal and electron microscopy, we also demonstrate that PMP bind to non-activated endothelial cells. In addition, PMP markedly increased invasion of human endothelial cells through a layer of matrigel. This effect was abolished by an inhibitor of VEGF receptor tyrosine phosphorylation or laminaran sulfate (heparanase inhibitor). It was also partially reduced by PDGF blocking mAb, whereas blocking of bFGF had no effect. Furthermore, we have demonstrated that PMP induce angiogenesis in an in vivo model, in which beads (30 μl) of 4% agarose gel containing the substances under study were transplanted subcutaneously into mice. Image analysis of the capillary area revealed the following: control beads − 0.2±0.05 mm2, VEGF + bFGF containing beads − 4.8±1.1 mm2, PMP (100 μg/ml) containing beads − 5.1±1.3 mm2, p<0.001 versus control. The latter finding was further supported by immunohistochemical staining of the skin in the vicinity of the beads for von Willebrand factor, a marker of endothelial cells (control − 4.0±3.2, VEGF+bFGF − 12±4.4, PMP − 17±6.5 capillaries per view field, p<0.05 versus control). Finally, we explored the potential effect of PMP in a rat myocardial infarction model. Ischemia was induced by LAD ligation followed by injection of either PMP or PBS into the ischemic region. Preliminary evaluation of the LAD myocardial territory in sham-operated animals revealed 157±42.0 capillaries per view field. In contrast, number of capillaries observed 3 weeks after induction of ischemia was reduced to 34±21.5. When PMP were injected into the ischemic region, there was an increase in capillary number up to 97±27.3. In conclusion, PMP induce angiogenesis in both in vitro and in vivo models. Local injection of PMP into the ischemic myocardium may improve revascularization.


2015 ◽  
Vol 28 ◽  
pp. 234-239 ◽  
Author(s):  
Sayuri Yoshizawa ◽  
Amy Chaya ◽  
Kostas Verdelis ◽  
Elizabeth A. Bilodeau ◽  
Charles Sfeir

Sign in / Sign up

Export Citation Format

Share Document