scholarly journals In Situ Electrochemical Characterization of a Microbial Fuel Cell Biocathode Running on Wastewater

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 839
Author(s):  
Sudarsu V. Ramanaiah ◽  
Cristina M. Cordas ◽  
Sara Matias ◽  
Luís P. Fonseca

The electrochemical features of microbial fuel cells’ biocathodes, running on wastewater, were evaluated by cyclic voltammetry. Ex situ and in situ electrochemical assays were performed and the redox processes associated with the presence of microorganisms and/or biofilms were attained. Different controls using sterile media (abiotic cathode microbial fuel cell) and membranes covering the electrodes were performed to evaluate the source of the electrochemistry response (surface biofilms vs. biotic electrolyte). The bacteria presence, in particular when biofilms are allowed to develop, was related with the enhanced active redox processes associated with an improved catalytic activity, namely for oxygen reduction, when compared with the results attained for an abiotic microbial fuel cell cathode. The microbial main composition was also attained and is in agreement with other reported studies. The current study aims contributing to the establishment of the advantages of using biocathodes rather than abiotic, whose conditions are frequently harder to control and to contribute to a better understanding of the bioelectrochemical processes occurring on the biotic chambers and the electrode surfaces.

2020 ◽  
Author(s):  
S. Venkata Ramana ◽  
Cristina M. Cordas ◽  
Sara C. Matias ◽  
Luis Joaquim Pina da Fonseca

Abstract In the present work the electrochemical behaviour of microbial cells from a biocathode microbial fuel cell (MFC) functioning with wastewater was evaluated by cyclic voltammetry. In-situ electrochemical assays were performed and, under the tested experimental conditions, the biocathode medium was found to be the most efficient for the cathodic catalysed electrochemical reduction of oxygen. Different controls using sterile media and membranes covering the electrodes were performed and compared with the regular biocathode results. In the biocathode chamber, the presence of bacteria was associated with the enhanced active redox processes and with the higher electrochemical reduction of oxygen activity. The present study is a contribution to the understanding of the viability and advantages of the biocathodes use in MFC.


2017 ◽  
Vol 3 (5) ◽  
pp. 806-810 ◽  
Author(s):  
Xiaoyuan Zhang ◽  
Qiuying Wang ◽  
Xue Xia ◽  
Weihua He ◽  
Xia Huang ◽  
...  

Inexpensive carbon black combined with heat-treatment produced the most effective activated carbon catalyst for improving microbial fuel cell cathode performance.


2021 ◽  
Author(s):  
Shiv Singh ◽  
Amol Pophali ◽  
Rishabh Anand Omar ◽  
Rajeev Kumar ◽  
Pradip Kumar ◽  
...  

Carbon foam was used as a substrate for NiO and growing carbon nanofibers. The synthesized NiO-CNF-CF electrode was successfully used as an efficient electrode for a microbial fuel cell.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 534 ◽  
Author(s):  
Borker Mohnish ◽  
Suchithra T.V

The need for a sustainable source of energy has catered engineers to discover and develop a biological battery known as Plant Microbial fuel cell. This biological battery operates with the help of electrochemically active bacteria in presence of CO2, sunlight and water. This technique is gaining importance in the field of bioelectricity as it produces clean in-situ energy from living plants without the need to harvest the plant species. Research on these cells have led to the development of various models. One such plant species Setaria faberi was tested for its compatibility in sediment plant microbial fuel cell. Power density of 4.6mW/m2 was obtained when it was tested with cocopeat as a hydroponic media. This paper highlights the suitability of S. faberi in producing sustainable bioelectricity with a hydroponic media.  


2015 ◽  
Vol 31 (1) ◽  
Author(s):  
Anam Asghar ◽  
Abdul Aziz Abdul Raman ◽  
Wan Mohd Ashri Wan Daud

AbstractWastewater-based microbial fuel cell is a promising green technology that can potentially be used to treat recalcitrant wastewater such as textile wastewater through


2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


Sign in / Sign up

Export Citation Format

Share Document