Well-Dispersed MgAl2O4 Supported Ni Catalyst with Enhanced Catalytic Performance and the Reason of Its Deactivation for Long-Term Dry Methanation Reaction
Dry methanation of syngas is a promising route for synthetic natural gas production because of its water and cost saving characteristics, as we reported previously. Here, we report a simple soaking process for the preparation of well-dispersed Ni/MgAl2O4-E catalyst with an average Ni size of 6.4 nm. The catalytic test results showed that the Ni/MgAl2O4-E catalyst exhibited considerably higher activity and better stability than Ni/MgAl2O4-W catalyst prepared by conventional incipient wetness impregnation method in dry methanation reaction. The long-term stability test result of 335 h has demonstrated that the deactivation of the Ni/MgAl2O4-E catalyst is inevitable. With multiple characterization techniques including ICP, EDS, XRD, STEM, TEM, SEM and TG, we reveal that the graphitic carbon encapsulating Ni nanoparticles are the major reasons responsible for catalyst deactivation, and the rate of carbon deposition decreases with reaction time.