scholarly journals Targeting Hedgehog Pathway and DNA Methyltransferases in Uterine Leiomyosarcoma Cells

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Natalia Garcia ◽  
Ayman Al-Hendy ◽  
Edmund C. Baracat ◽  
Katia Candido Carvalho ◽  
Qiwei Yang

Uterine leiomyosarcoma (LMS) is an aggressive tumor that presents a poor prognosis, high rates of recurrence, and metastasis. Because of its rarity, there is no information available concerning LMS molecular mechanisms of origin and development. Here, we assessed the expression profile of Hedgehog (HH) signaling pathway markers and the effects of their pharmacological inhibition on uterine smooth muscle (UTSM), leiomyoma, and LMS cells. Additionally, we also evaluated the effects of DNMTs inhibition on LMS cell behavior. Cell proliferation, migration and apoptosis rates were evaluated by MTT, Scratch, and Annexin V assays, respectively. RNA expression and protein levels were assessed by qRT-PCR and Western blot. We found that SMO and GLIs (1, 2, and 3) expression was upregulated in LMS cells, with increased nuclear levels of GLI proteins. Treatment with LDE225 (SMOi) and Gant61 (GLIi) resulted in a significant reduction in Glis protein levels in LMS (p < 0.05). Additionally, the expression of DNMT (1, 3a, and 3b), as well as GLI1 nuclear expression, was significantly decreased after treatment with HH inhibitor in LMS cells. Our results showed that blocking of SMO, GLI, and DNMTs is able to inhibit LMS proliferation, migration, and invasion. Importantly, the combination of those treatments exhibited a potentiated effect on LMS malignant features due to HH pathway deactivation.

2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wen-Wen Huang ◽  
Jai-Sing Yang ◽  
Meng-Wei Lin ◽  
Po-Yuan Chen ◽  
Shang-Ming Chiou ◽  
...  

Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss ofΔΨm, resulting in the releases of cytochromec, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382097327
Author(s):  
Xin Xie ◽  
Hongchao He ◽  
Ning Zhang ◽  
Xiaojing Wang ◽  
Wenbin Rui ◽  
...  

Purpose: Discoidin domain receptor 1 (DDR1) belongs to a novel class of receptor tyrosine kinases. Previous evidence indicates that DDR1 overexpression promotes the aggressive growth of bladder cancer (BC) cells. This study aimed to investigate the molecular mechanisms by which DDR1 influences BC. Methods: DDR1 was transfected into human BC RT4 cells. DDR1, COL4A1, and MMP-2 expression in 30 BC tissues and paired adjacent tissues were examined by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. Transwell assays were conducted to determine cell migration and invasion. RT-PCR and western blot (WB) were also used to measure the DDR1, COL4A1, MMP-2, and EMT-related gene (ZEB1 and SLUG) expression in RT4 cells after DDR1 overexpression. Results: COL4A1 and MMP-2 interacted with DDR1 in the PPI network. RT-PCR and immunohistochemistry results showed that both mRNA and protein levels of DDR1 and COL4A1 were significantly increased in BC tissue, while the expression of MMP-2 was increased only at the mRNA level ( P < 0.05). Overexpression of DDR1 in RT4 cells significantly promoted their migratory and invasive capabilities in vitro ( P < 0.05). Moreover, overexpression of DDR1 in RT4 cells increased the mRNA and protein expression of ZEB1, SLUG, COL4A1, and MMP-2 ( P < 0.01). DDR1-mediated migration and invasion of RT4 cells were reversed after COL4A1-siRNA treatment. Conclusion: DDR1 may be a potential therapeutic target in BC patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Na Li ◽  
Rui Hou ◽  
Caixia Liu ◽  
Tian Yang ◽  
Chong Qiao ◽  
...  

Abstract Background Placenta accreta (PA) is a major cause of maternal morbidity and mortality in modern obstetrics, few studies have explored the underlying molecular mechanisms. Methods In our study, transcriptome and proteome profiling were performed in placental tissues from ten participants including five cases each in the PA and control groups to clarify the pathogenesis of PA. Results We identified differential expression of 37,743 transcripts and 160 proteins between the PA and control groups with an overlap rate of 0.09%. The 33 most-significant transcripts and proteins were found and further screened and analyzed. Adhesion-related signature, chemotaxis related signatures and immune related signature were found in the PA group and played a certain role. Sum up two points, three significant indicators, methyl-CpG-binding domain protein 2 (MeCP2), podocin (PODN), and apolipoprotein D (ApoD), which participate in “negative regulation of cell migration”, were downregulated at the mRNA and protein levels in PA group. Furthermore, transwell migration and invasion assay of HTR-8/SVneo cell indicated the all of them impaired the migration and invasion of trophoblast. Conclusion A poor correlation was observed between the transcriptome and proteome data and MeCP2, PODN, and ApoD decreased in transcriptome and proteome profiling, resulting in increased migration of trophoblasts in the PA group, which clarify the mechanism of PA and might be the biomarkers or therapy targets in the future.


2018 ◽  
Vol 96 (5) ◽  
pp. 646-654 ◽  
Author(s):  
Yunsong Zhang ◽  
Jun Fang ◽  
Huiwen Ma

Myocardial infarction (MI), a type of ischemic heart disease, is generally accompanied by apoptosis of cardiomyocytes. MicroRNAs play the vital roles in the development and physiology of MI. Here, we established a downregulation model of miR-182-5p in H9c2 cells under hypoxic conditions to investigate the potential molecular mechanisms for miR-182-5p in hypoxia-induced cardiomyocyte apoptosis (HICA). RT-qPCR indicated that miR-182-5p levels exhibit a time-dependent increase in the rate of apoptosis induced by hypoxia. The results from the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays indicated that cardiomyocyte injury noticeably increased after exposure to hypoxia. Meanwhile, hypoxia dramatically increased the apoptosis rate [which was reflected in the results from the annexin V – propidium iodide (PI) assay], enhanced caspase-3 activity, and reduced the expression of Bcl-2. Downregulation of miR-182-5p can significantly reverse hypoxia-induced cardiomyocyte injury or apoptosis. Importantly, bioinformatic analysis and dual-luciferase reporter assay revealed that CIAPIN1 (cytokine-induced apoptosis inhibitor 1) was a direct functional target of miR-182-5p, and that inhibition of miR-182-5p can lead to an increase in CIAPIN1 expression at both the mRNA and protein levels. Furthermore, the knockdown of CIAPIN1 with small interfering RNAs (siRNAs) efficiently abolished the protective effects of miR-182-5p inhibitor on HICA, demonstrating that miR-182-5p plays a pro-apoptotic role in cardiomyocytes under hypoxic conditions by downregulating CIAPIN1. Collectively, our results demonstrate that miR-182-5p may serve an underlying target to prevent cardiomyocytes from hypoxia-induced injury or apoptosis.


2020 ◽  
Author(s):  
Encheng Zhang ◽  
Xiao Dong ◽  
Jialiang Shao ◽  
Xingyu Mu ◽  
Siteng Chen ◽  
...  

Abstract Background: Recent studies have reported that MLST8 is upregulated in many malignant tumors. Nevertheless, the underlying molecular mechanisms is still unclear. The aim of this work was to investigate how MLST8 contribute to the development and progression of renal cancer (ccRCC).Methods: To identify molecular mediators of the oncogenic tumor function of MLST8, we analyzed a quantitative mass spectrometry by a previous study and checked the amino acid sequence in MLST8. Immunoprecipitation and Western Blotting were used to analyze the interaction between FBXW7 and MLST8. Transwell assays determined cell migration and invasion. In vivo experiments were performed to verify tumor growth. Immunohistochemistry was used to analyze protein levels in patients’ tumor samples. Results: MLST8 is an oncogenic protein in TCGA database and ccRCC clinical specimens. We also ascertain that MLST8 interacts with FBXW7, which was universally regarded as an E3 ubiquitin ligase. MLST8 can be degraded and ubiquitinated by tumor suppressor FBXW7. FBXW7 recognizes a consensus motif (T/S) PXX (S/T/D/E) of MLST8 and triggers MLST8 degradation via the ubiquitin-proteasome pathway. Strikingly, the activated CDK1 kinase engages in the MLST8 phosphorylation required for FBXW7-mediated degradation. In vitro and vivo assay, we further prove that MLST8 is an essential mediator of FBXW7 inactivation-induced tumor growth, migration, and invasion. Furthermore, MLST8 and FBXW7 protein are negatively correlated in human renal cancer specimens. Conclusions: Our findings suggest that MLST8 is a putative oncogene that functions via interaction with FBXW7, and inhibition MLST8 can be a potential future target in ccRCC treatment.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 379
Author(s):  
Silvia Grassilli ◽  
Federica Brugnoli ◽  
Rossano Lattanzio ◽  
Simonetta Buglioni ◽  
Valeria Bertagnolo

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive tumor malignancy worldwide, mainly due to uncontrolled metastasis. Among the numerous molecules deregulated in PDAC, different members of the Akt pathways are of great importance because they are involved in tumor cell proliferation, migration, and invasion. We have recently demonstrated that Vav1, ectopically expressed in solid tumors, is capable of down-modulating expression and/or activation of specific Akt isoforms in breast cancer cells. By using pancreatic cell lines expressing different basal levels of Vav1, we demonstrated here that Vav1 down-regulates the expression of Akt2, known to correlate with tumor metastases and resistance to therapy. In particular, while the silencing of Vav1 is sufficient to induce Akt2, its up-modulation reduces Akt2 levels only when Vav1 accumulates inside the nucleus of PDAC cells. Moreover, in PDAC tissues, we revealed that high nuclear levels of Vav1 correlate with low Akt2 expression. Although we cannot demonstrate the mechanisms involved, our results provide new insights into the role of Vav1 in PDAC and, as targeting specific members of the Akt family is a promising therapeutic chance in solid tumors, they suggest that Vav1, by down-modulating Akt2, has potential as a molecular target in PDAC.


2021 ◽  
Author(s):  
Bingtian Liu ◽  
Ling Qiang ◽  
Bingxin Guan ◽  
Zhipeng Ji

Abstract Background: Recently, kinesin family member 21B (KIF21B) has been reported to be an oncogene in non-small cell lung cancer and hepatocellular carcinoma. However, the functional role and related molecular mechanisms underlying gastric cancer (GC) pathogenesis remain largely uncovered. Methods: The expression of KIF21B was investigated by analysis of Oncomine microarray gene expression datasets and clinical specimens. The association between KIF21B and miR-132-3p was assessed by luciferase reporter assay. CCK-8 assay and transwell assay were performed to analyze the functional role of miR-132-3p/KIF21B in GC cells. Related protein expression levels were evaluated by immunohistochemistry and western blot analysis.Results: We first found that the expression of KIF21B was upregulated in GC tissues compared with adjunct normal tissues. Knockdown of KIF21B significantly suppressed the proliferation, migration and invasion in GC cell lines (AGS and SNU-5). KIF21B was confirmed as the target of miR-132-3p in GC cells. Moreover, miR-132-3p was down-regulated and inversely correlated with KIF21B expression in GC tissues. Further functional experiments demonstrated that overexpression of KIF21B remarkedly reversed the suppressive effects of miR-132-3p overexpression on GC cell proliferation, migration and invasion. Furthermore, miR-132-3p overexpression downregulated the protein levels of Wnt1, c-Myc, β-catenin, PCNA and N-cadherin, and upregulated E-cadherin expression in GC cells, which were all alleviated after KIF21B overexpression. Conclusions: In summary, our findings provide the first evidence that down-regulation of KIF21B by miR-132-3p suppresses cellular functions in GC via regulating Wnt/β-catenin signaling.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252541
Author(s):  
Rich Milton Dulay ◽  
Benigno C. Valdez ◽  
Yang Li ◽  
Seemanti Chakrabarti ◽  
Braham Dhillon ◽  
...  

Treatment of hematologic malignancies is a formidable challenge for hematologists and there is an urgent need to identify safe and efficacious agents either via synthesis in the laboratory or isolation from natural products. Here, we report the cytotoxicity of extracts from mushroom Gymnopilus purpureosquamulosus Høil (G. pps) and describe its molecular mechanisms. Using leukemia, lymphoma and multiple myeloma cell lines, 28–35 ppm G. pps extract inhibited cell proliferation by ~46–79%, which correlates with activation of apoptosis as indicated by increase in annexin V-positive cells (~5–8-fold), production of reactive oxygen species (~2–3-fold), cells in sub G0/G1 phase (~3–13-fold), caspase 3 enzymatic activity (~1.6–2.9-fold), DNA fragmentation, PARP1 cleavage and down-regulation of prosurvival proteins. Mitochondrial membrane potential decreased and leakage of pro-apoptotic factors to cytoplasm was observed, consistent with the activation of intrinsic apoptosis. Western blot analysis showed activation of the ASK1-MEK-SAPK/JNK and ASK1-P38 MAPK pathways possibly due to changes in the cellular redox status as suggested by decreased protein levels of peroxiredoxin, thioredoxin and thioredoxin reductase. Moreover, antioxidant N-acetylcysteine alleviated the cytotoxicity of G. pps. Pharmacological inhibition of SAPK/JNK and P38 alleviated the G. pps-mediated cytotoxicity. The extract activated apoptosis in leukemia and lymphoma patient cell samples but not in mononuclear cells from healthy donors further supporting the therapeutic values of G. pps for hematologic malignancies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiangrong Cui ◽  
Honghong Wang ◽  
Xueqing Wu ◽  
Kai Huo ◽  
Xuan Jing

Abstract Background Karyopherin α-2 (KPNA2) is a member of karyopherin family, which is proved to be responsible for the import or export of cargo proteins. Studies have determined that KPNA2 is associated with the development and prognosis of various cancers, yet the role of KPNA2 in ovarian carcinoma and its potential molecular mechanisms remains unclear. Materials and methods The expression and prognosis of KPNA2 in ovarian cancer was investigated using GEPIA and Oncomine analyses. Mutations of KPNA2 in ovarian cancer were analyzed by cBioPortal database. The prognostic value of KPNA2 expression was evaluated by our own ovarian carcinoma samples using RT-qPCR. Subsequently, the cell growth, migration and invasion of ovarian cancer cells were investigated by CCK-8 and transwell assay, respectively. The protein levels of KPNA2 and KIF4A were determined by western blot. Results We obtained the following important results. (1) KPNA2 and KIF4A wereoverexpressed in ovairan cancer tissues and cells. (2) Among patients with ovarian cancer, overexpressed KPNA2 was associated with lower survival rate. (3) Mutations (R197* and S140F) in KPNA2 will have some influences on protein structure, and then may cause protein function abnormal. (4) KPNA2 konckdown inhibited proliferation, migration, invasion, as well as the expression of KIF4A. Conclusion KPNA2, as a tumorigenic gene in ovarian cancer, accelerated tumor progression by up-regulating KIF4A, suggesting that KPNA2 might be a hopeful indicator of treatment and poor prognosis.


Sign in / Sign up

Export Citation Format

Share Document