scholarly journals The Dynamic Interaction between Extracellular Matrix Remodeling and Breast Tumor Progression

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.

2016 ◽  
Vol 11 ◽  
pp. BMI.S38439 ◽  
Author(s):  
Federica Genovese ◽  
Zsolt S. Kàrpàti ◽  
Signe H. Nielsen ◽  
Morten A. Karsdal

The aim of this study was to set up an ex vivo model for renal interstitial fibrosis in order to investigate the extracellular matrix (ECM) turnover profile in the fibrotic kidney. We induced kidney fibrosis in fourteen 12-week-old male Sprague Dawley rats by unilateral ureteral obstruction (UUO) surgery of the right ureter. The left kidney (contralateral) was used as internal control. Six rats were sham operated and used as the control group. Rats were terminated two weeks after the surgery; the kidneys were excised and precision-cut kidney slices (PCKSs) were cultured for five days in serum-free medium. Markers of collagen type I formation (P1NP), collagen type I and III degradation (C1M and C3M), and α-smooth muscle actin (αSMA) were measured in the PCKS supernatants by enzyme-linked immunosorbent assay. P1NP, C1M, C3M, and α-SMA were increased up to 2- to 13-fold in supernatants of tissue slices from the UUO-ligated kidneys compared with the contralateral kidneys ( P < 0.001) and with the kidneys of sham-operated animals ( P < 0.0001). The markers could also reflect the level of fibrosis in different animals. The UUO PCKS ex vivo model provides a valuable translational tool for investigating the extracellular matrix remodeling associated with renal interstitial fibrosis.


2018 ◽  
Vol 38 (Suppl_1) ◽  
Author(s):  
Marika Fava ◽  
Javier Barallobre-Barreiro ◽  
Ursula Mayr ◽  
Ruifang Lu ◽  
Athanasios Didangelos ◽  
...  

2018 ◽  
Vol 38 (7) ◽  
pp. 1537-1548 ◽  
Author(s):  
Marika Fava ◽  
Javier Barallobre-Barreiro ◽  
Ursula Mayr ◽  
Ruifang Lu ◽  
Athanasios Didangelos ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yasmin ElTahir ◽  
Amna Al-Araimi ◽  
Remya R. Nair ◽  
Kaija J. Autio ◽  
Hongmin Tu ◽  
...  

Abstract Background Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). Results ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. Conclusions Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis.


2018 ◽  
Vol 11 ◽  
pp. 175628641881809 ◽  
Author(s):  
Egor Dzyubenko ◽  
Daniel Manrique-Castano ◽  
Christoph Kleinschnitz ◽  
Andreas Faissner ◽  
Dirk M. Hermann

2017 ◽  
Vol 313 (1) ◽  
pp. R44-R50 ◽  
Author(s):  
Shivam H. Patel ◽  
Andrew C. D’Lugos ◽  
Erica R. Eldon ◽  
Donald Curtis ◽  
Jared M. Dickinson ◽  
...  

Acetaminophen (APAP) given during chronic exercise reduces skeletal muscle collagen and cross-linking in rats. We propose that the effect of APAP on muscle extracellular matrix (ECM) may, in part, be mediated by dysregulation of the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). The purpose of this study was to evaluate the impact of APAP consumption during acute resistance exercise (RE) on several regulators of the ECM in human skeletal muscle. In a double-blinded, placebo-controlled, randomized crossover design, recreationally active men ( n = 8, 25 ± 2 yr) performed two trials of knee extension. Placebo (PLA) or APAP (1,000 mg/6 h) was given for 24 h before and immediately following RE. Vastus lateralis biopsies were taken at baseline and 1 and 3 h post-RE. Quantitative RT-PCR was used to determine differences in mRNA expression. MMP-2, type I collagen, and type III collagen mRNA expression was not altered by exercise or APAP ( P > 0.05). When compared with PLA, TIMP-1 expression was lower at 1 h post-RE during APAP conditions but greater than PLA at 3 h post-RE ( P < 0.05). MMP-9 expression and protein levels were elevated at 3 h post-RE independent of treatment ( P < 0.05). Lysyl oxidase expression was greater at 3 h post-RE during APAP consumption ( P < 0.05) compared with PLA. MMP-2 and TIMP-1 protein was not altered by RE or APAP ( P > 0.05). Phosphorylation of ERK1/2 and p38-MAPK increased ( P < 0.05) with RE but was not influenced by APAP. Our findings do not support our hypothesis and suggest that short-term APAP consumption before RE has a small impact on the measured ECM molecules in human skeletal muscle following acute RE.


Sign in / Sign up

Export Citation Format

Share Document