scholarly journals Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.

2020 ◽  
Author(s):  
Karla Isabel Lira-De León ◽  
Alma Delia Bertadillo-Jilote ◽  
David Gustavo García-Gutiérrez ◽  
Marco Antonio Meraz-Ríos

2020 ◽  
Vol 78 (1) ◽  
pp. 87-95
Author(s):  
Reagon Karki ◽  
Sumit Madan ◽  
Yojana Gadiya ◽  
Daniel Domingo-Fernández ◽  
Alpha Tom Kodamullil ◽  
...  

Background: Recent studies have suggested comorbid association between Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) through identification of shared molecular mechanisms. However, the inference is pre-dominantly literature-based and lacks interpretation of pre-disposed genomic variants and transcriptomic measurables. Objective: In this study, we aim to identify shared genetic variants and dysregulated genes in AD and T2DM and explore their functional roles in the comorbidity between the diseases. Methods: The genetic variants for AD and T2DM were retrieved from GWAS catalog, GWAS central, dbSNP, and DisGeNet and subjected to linkage disequilibrium analysis. Next, shared variants were prioritized using RegulomeDB and Polyphen-2. Afterwards, a knowledge assembly embedding prioritized variants and their corresponding genes was created by mining relevant literature using Biological Expression Language. Finally, coherently perturbed genes from gene expression meta-analysis were mapped to the knowledge assembly to pinpoint biological entities and processes and depict a mechanistic link between AD and T2DM. Results: Our analysis identified four genes (i.e., ABCG1, COMT, MMP9, and SOD2) that could have dual roles in both AD and T2DM. Using cartoon representation, we have illustrated a set of causal events surrounding these genes which are associated to biological processes such as oxidative stress, insulin resistance, apoptosis and cognition. Conclusion: Our approach of using data as the driving force for unraveling disease etiologies eliminates literature bias and enables identification of novel entities that serve as the bridge between comorbid conditions.


2014 ◽  
Vol 13 (2) ◽  
pp. 338-346 ◽  
Author(s):  
Mohammad Kamal ◽  
Shubha Priyamvada ◽  
Arivarasu Anbazhagan ◽  
Nasimudeen Jabir ◽  
Shams Tabrez ◽  
...  

2017 ◽  
Vol 11 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Aparecida Marcelino de Nazareth

ABSTRACT Both Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are two common forms of disease worldwide and many studies indicate that people with diabetes, especially DM, are at higher risk of developing AD. AD is characterized by progressive cognitive decline and accumulation of β-amyloid (Aβ) forming senile plaques. DM is a metabolic disorder characterized by hyperglycemia in the context of insulin resistance and relative lack of insulin. Both diseases also share common characteristics such as loss of cognitive function and inflammation. Inflammation resulting from Aβ further induces production of Aβ1-42 peptides. Inflammation due to overnutrition induces insulin resistance and consequently DM. Memory deficit and a decrease in GLUT4 and hippocampal insulin signaling have been observed in animal models of insulin resistance. The objective of this review was to show the shared characteristics of AD and DM.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Rongzi Li ◽  
Yuxian Zhang ◽  
Suhail Rasool ◽  
Thangiah Geetha ◽  
Jeganathan Ramesh Babu

Type 2 diabetes mellitus is a complicated metabolic disorder characterized by hyperglycemia and glucose intolerance. Alzheimer’s disease is a progressive brain disorder characterized by a chronic loss of cognitive and behavioral function. Considering the shared characteristics of both diseases, common therapeutic and preventive agents may be effective. Bioactive compounds such as polyphenols, vitamins, and carotenoids found in vegetables and fruits can have antioxidant and anti-inflammatory effects. These effects make them suitable candidates for the prevention or treatment of diabetes and Alzheimer’s disease. Increasing evidence from cell or animal models suggest that bioactive compounds may have direct effects on decreasing hyperglycemia, enhancing insulin secretion, and preventing formation of amyloid plaques. The possible underlying molecular mechanisms are described in this review. More studies are needed to establish the clinical effects of bioactive compounds.


2018 ◽  
Vol 19 (11) ◽  
pp. 3306 ◽  
Author(s):  
Andrea Tumminia ◽  
Federica Vinciguerra ◽  
Miriam Parisi ◽  
Lucia Frittitta

In the last two decades, numerous in vitro studies demonstrated that insulin receptors and theirs downstream pathways are widely distributed throughout the brain. This evidence has proven that; at variance with previous believes; insulin/insulin-like-growth-factor (IGF) signalling plays a crucial role in the regulation of different central nervous system (CNS) tasks. The most important of these functions include: synaptic formation; neuronal plasticity; learning; memory; neuronal stem cell activation; neurite growth and repair. Therefore; dysfunction at different levels of insulin signalling and metabolism can contribute to the development of a number of brain disorders. Growing evidences demonstrate a close relationship between Type 2 Diabetes Mellitus (T2DM) and neurodegenerative disorders such as Alzheimer’s disease. They, in fact, share many pathophysiological characteristics comprising impaired insulin sensitivity, amyloid β accumulation, tau hyper-phosphorylation, brain vasculopathy, inflammation and oxidative stress. In this article, we will review the clinical and experimental evidences linking insulin resistance, T2DM and neurodegeneration, with the objective to specifically focus on insulin signalling-related mechanisms. We will also evaluate the pharmacological strategies targeting T2DM as potential therapeutic tools in patients with cognitive impairment.


2019 ◽  
Vol 0 (0) ◽  
pp. 1-14
Author(s):  
samar mahmoud ◽  
Dina Abo-El-Matty ◽  
Noha Mesbah ◽  
Eman Mehanna ◽  
Mohamed Hafez

Sign in / Sign up

Export Citation Format

Share Document