scholarly journals Molecular Characterization of NDL1-AGB1 Mediated Salt Stress Signaling: Further Exploration of the Role of NDL1 Interacting Partners

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2261
Author(s):  
Nidhi Gupta ◽  
Abhishek Kanojia ◽  
Arpana Katiyar ◽  
Yashwanti Mudgil

Salt stress is considered to be the most severe abiotic stress. High soil salinity leads to osmotic and ionic toxicity, resulting in reduced plant growth and crop production. The role of G-proteins during salt stresses is well established. AGB1, a G-protein subunit, not only plays an important role during regulation of Na+ fluxes in roots, but is also involved in the translocation of Na+ from roots to shoots. N-Myc Downregulated like 1 (NDL1) is an interacting partner of G protein βγ subunits and C-4 domain of RGS1 in Arabidopsis. Our recent in-planta expression analysis of NDL1 reported changes in patterns during salt stress. Based on these expression profiles, we have carried out functional characterization of the AGB1-NDL1 module during salinity stress. Using various available mutant and overexpression lines of NDL1 and AGB1, we found that NDL1 acts as a negative regulator during salt stress response at the seedling stage, an opposite response to that of AGB1. On the other hand, during the germination phase of the plant, this role is reversed, indicating developmental and tissue specific regulation. To elucidate the mechanism of the AGB1-NDL1 module, we investigated the possible role of the three NDL1 stress specific interactors, namely ANNAT1, SLT1, and IDH-V, using yeast as a model. The present study revealed that NDL1 acts as a modulator of salt stress response, wherein it can have both positive as well as negative functions during salinity stress. Our findings suggest that the NDL1 mediated stress response depends on its developmental stage-specific expression patterns as well as the differential presence and interaction of the stress-specific interactors.

2019 ◽  
Author(s):  
Qian Wan ◽  
Lu Luo ◽  
Xiurong Zhang ◽  
Yuying Lv ◽  
Suqing Zhu ◽  
...  

Abstract Background Nuclear factor Y (NF-Y) gene family consists of NF-YA, NF-YB and NF-YC subfamilies. Many members of NF-Y family have been involved in plant development processes, phytohormone signaling and tolerance to stresses in Arabidopsis and other plant species. However, little attention has been given in peanut. Results A total of 33 AhNF-Y genes (AhNF-Ys) were identified and distributed on 16 chromosomes. A phylogenetic analysis indicated that NF-Y genes prossessed highly conservatism in different plants. Gene duplication analyze indicated that only segmental duplication were detected. The abiotic stress-related regulatory elements analysis showed that AhNF-Ys, except for AhNF-YB6, contained at least one abiotic stress response element. With RNA-seq data, the tissue/organ-specific expression and differential expression profiling under salt stress were analyzed, indicating that six selected AhNF-Y gene may play potential roles in the regulation of salt stress response. qRT-PCR results suggested that these AhNF-Y genes also responded to osmotic, ABA (Abscisic Acid) and SA (Salicylic acid) stresses. Conclusions In this study, thirty three AhNF-Y genes were identified in cultivated peanut and the phylogeny, gene structures, motif composition, chromosomal location, gene duplication, stress-related regulatory elements, and expression patterns were also examined. These results may contribute to functional characterization of AhNF-Y genes in further research.


2021 ◽  
Author(s):  
Ashok Saddhe Ankush ◽  
Ajay Kumar Mishra ◽  
Kumar Kundan

Planta ◽  
2016 ◽  
Vol 245 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Hye-Yeon Seok ◽  
Dong-Hyuk Woo ◽  
Linh Vu Nguyen ◽  
Huong T. Tran ◽  
Vaishali N. Tarte ◽  
...  

Mycorrhiza ◽  
2008 ◽  
Vol 18 (6-7) ◽  
pp. 317-329 ◽  
Author(s):  
Mariela Echeverria ◽  
Agustina Azul Scambato ◽  
Analía Inés Sannazzaro ◽  
Santiago Maiale ◽  
Oscar Adolfo Ruiz ◽  
...  

2013 ◽  
Vol 83 (4-5) ◽  
pp. 379-390 ◽  
Author(s):  
Tsung-Meng Wu ◽  
Wan-Rong Lin ◽  
Yun-Ting Kao ◽  
Yi-Ting Hsu ◽  
Ching-Hui Yeh ◽  
...  

2015 ◽  
Vol 402 (1-2) ◽  
pp. 159-178 ◽  
Author(s):  
Wei Ji ◽  
Jin Koh ◽  
Sheng Li ◽  
Ning Zhu ◽  
Craig P. Dufresne ◽  
...  

Author(s):  
Neeraj Kumar ◽  
Chellapilla Bharadwaj ◽  
Sarika Sahu ◽  
Aalok Shiv ◽  
Abhishek Kumar Shrivastava ◽  
...  

AbstractLncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92–3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt  treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea.


2017 ◽  
Vol 180 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Ivana Koleška ◽  
Dino Hasanagić ◽  
Ivana Maksimović ◽  
Borut Bosančić ◽  
Biljana Kukavica

Sign in / Sign up

Export Citation Format

Share Document