scholarly journals Characterization of Extracellular Vesicles from Bronchoalveolar Lavage Fluid and Plasma of Patients with Lung Lesions Using Fluorescence Nanoparticle Tracking Analysis

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3473
Author(s):  
Magdalena Dlugolecka ◽  
Jacek Szymanski ◽  
Lukasz Zareba ◽  
Zuzanna Homoncik ◽  
Joanna Domagala-Kulawik ◽  
...  

The current lack of reliable methods for quantifying extracellular vesicles (EVs) isolated from complex biofluids significantly hinders translational applications in EV research. The recently developed fluorescence nanoparticle tracking analysis (FL-NTA) allows for the detection of EV-associated proteins, enabling EV content determination. In this study, we present the first comprehensive phenotyping of bronchopulmonary lavage fluid (BALF)-derived EVs from non-small cell lung cancer (NSCLC) patients using classical EV-characterization methods as well as the FL-NTA method. We found that EV immunolabeling for the specific EV marker combined with the use of the fluorescent mode NTA analysis can provide the concentration, size, distribution, and surface phenotype of EVs in a heterogeneous solution. However, by performing FL-NTA analysis of BALF-derived EVs in comparison to plasma-derived EVs, we reveal the limitations of this method, which is suitable only for relatively pure EV isolates. For more complex fluids such as plasma, this method appears to not be sensitive enough and the measurements can be compromised. Our parallel presentation of NTA-based phenotyping of plasma and BALF EVs emphasizes the great impact of sample composition and purity on FL-NTA analysis that has to be taken into account in the further development of FL-NTA toward the detection of EV-associated cancer biomarkers.

The Analyst ◽  
2016 ◽  
Vol 141 (2) ◽  
pp. 371-381 ◽  
Author(s):  
Vijaya Sunkara ◽  
Hyun-Kyung Woo ◽  
Yoon-Kyoung Cho

We present an overview of current isolation, detection, and characterization methods of extracellular vesicles and their applications and limitations as a potential emerging biomarker in cancer management and their clinical implementation.


2020 ◽  
Author(s):  
E. Priglinger ◽  
J. Strasser ◽  
B. Buchroithner ◽  
F. Weber ◽  
S. Wolbank ◽  
...  

AbstractInterest in mesenchymal stem cell derived extracellular vesicles (MSC-EVs) as therapeutic agents has dramatically increased over the last decade. Preclinical studies show that MSC-EVs have anti-apoptotic and neuroprotective effects, boost wound healing, and improve the integration of allogeneic grafts through immunomodulation. Current approaches to the characterization and quality control of EV-based therapeutics include particle tracking techniques, Western blotting, and advanced cytometry, but standardized methods are lacking. In this study, we established and verified quartz crystal microbalance (QCM) as highly sensitive label-free immunosensing technique for characterizing clinically approved umbilical cord MSC-EVs enriched by tangential flow filtration and ultracentrifugation. Using QCM in conjunction with common characterization methods, we were able to specifically detect EVs via EV (CD9, CD63, CD81) and MSC (CD44, CD49e, CD73) markers and gauge their prevalence. Additionally, we characterized the topography and elasticity of these EVs by atomic force microscopy (AFM), enabling us to distinguish between EVs and non-vesicular particles (NVPs) in a therapeutic formulation. This measurement modality makes it possible to identify EV sub-fractions, discriminate between EVs and NVPs, and to characterize EV surface proteins, all with minimal sample preparation and using label-free measurement devices with low barriers of entry for labs looking to widen their spectrum of characterization techniques. Our combination of QCM with impedance measurement (QCM-I) and AFM measurements provides a robust multi-marker approach to the characterization of clinically approved EV formulations and opens the door to improved quality control.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chih-Chien Sung ◽  
Min-Hsiu Chen ◽  
Yi-Chang Lin ◽  
Yu-Chun Lin ◽  
Yi-Jia Lin ◽  
...  

Background: The utility of urinary extracellular vesicles (uEVs) to faithfully represent the changes of renal tubular protein expression remains unclear. We aimed to evaluate renal tubular sodium (Na+) or potassium (K+) associated transporters expression from uEVs and kidney tissues in patients with Gitelman syndrome (GS) caused by inactivating mutations in SLC12A3.Methods: uEVs were isolated by ultracentrifugation from 10 genetically-confirmed GS patients. Membrane transporters including Na+-hydrogen exchanger 3 (NHE3), Na+/K+/2Cl− cotransporter (NKCC2), NaCl cotransporter (NCC), phosphorylated NCC (p-NCC), epithelial Na+ channel β (ENaCβ), pendrin, renal outer medullary K1 channel (ROMK), and large-conductance, voltage-activated and Ca2+-sensitive K+ channel (Maxi-K) were examined by immunoblotting of uEVs and immunofluorescence of biopsied kidney tissues. Healthy and disease (bulimic patients) controls were also enrolled.Results: Characterization of uEVs was confirmed by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. Compared with healthy controls, uEVs from GS patients showed NCC and p-NCC abundance were markedly attenuated but NHE3, ENaCβ, and pendrin abundance significantly increased. ROMK and Maxi-K abundance were also significantly accentuated. Immunofluorescence of the representative kidney tissues from GS patients also demonstrated the similar findings to uEVs. uEVs from bulimic patients showed an increased abundance of NCC and p-NCC as well as NHE3, NKCC2, ENaCβ, pendrin, ROMK and Maxi-K, akin to that in immunofluorescence of their kidney tissues.Conclusion: uEVs could be a non-invasive tool to diagnose and evaluate renal tubular transporter adaptation in patients with GS and may be applied to other renal tubular diseases.


2018 ◽  
Author(s):  
Rajaram Krishnan ◽  
Juan P. Hinestrosa ◽  
David Searson ◽  
Robert Turner ◽  
Robert Kovelman ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2951
Author(s):  
Federica Anastasi ◽  
Silvia Maria Masciandaro ◽  
Renata Del Carratore ◽  
Maria Teresa Dell’Anno ◽  
Giovanni Signore ◽  
...  

Small extracellular vesicles have been intensively studied as a source of biomarkers in neurodegenerative disorders. The possibility to isolate neuron-derived small extracellular vesicles (NDsEV) from blood represents a potential window into brain pathological processes. To date, the absence of sensitive NDsEV isolation and full proteome characterization methods has meant their protein content has been underexplored, particularly for individual patients. Here, we report a rapid method based on an immunoplate covalently coated with mouse monoclonal anti-L1CAM antibody for the isolation and the proteome characterization of plasma-NDsEV from individual Parkinson’s disease (PD) patients. We isolated round-shaped vesicles with morphological characteristics consistent with exosomes. On average, 349 ± 38 protein groups were identified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis, 20 of which are annotated in the Human Protein Atlas as being highly expressed in the brain, and 213 were shared with a reference NDsEV dataset obtained from cultured human neurons. Moreover, this approach enabled the identification of 23 proteins belonging to the Parkinson disease KEGG pathway, as well as proteins previously reported as PD circulating biomarkers.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jonathan M. Carnino ◽  
Heedoo Lee ◽  
Yang Jin

Abstract Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).


Author(s):  
Andreas Weber ◽  
Julia Christin Wehmeyer ◽  
Vera Schmidt ◽  
Artur Lichtenberg ◽  
Payam Akhyari

Sign in / Sign up

Export Citation Format

Share Document