scholarly journals Epithelial and Neural Cadherin in Mammalian Fertilization: Studies in the Mouse Model

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Gustavo Luis Verón ◽  
María Florencia Veiga ◽  
Mónica Cameo ◽  
Clara Isabel Marín-Briggiler ◽  
Mónica Hebe Vazquez-Levin

Successful mammalian fertilization requires a well-orchestrated sequence of molecular events leading to gamete fusion. Since this interaction involves Ca2+-dependent adhesion events, the participation of the Ca+2-dependent cell-cell adhesion proteins Epithelial (E-cad) and Neural (N-cad) cadherin is envisaged. We have previously reported the expression of E-cad and N-cad in human gametes and showed evidence of their involvement in sperm-oocyte adhesion events leading to fertilization. To overcome ethical limitations associated with the use of human gametes in fertilization-related studies, the mouse has been selected worldwide as the experimental model for over 4 decades. Herein, we report a detailed study aimed at characterizing the expression of E-cad and N-cad in murine gametes and their involvement in murine fertilization using specific antibodies and blocking peptides towards both adhesion proteins. E-cad and N-cad protein forms, as well as other members of the adhesion complex, specifically β-catenin and actin, were identified in spermatozoa, cumulus cells and oocytes protein extracts by means of Western immunoblotting. In addition, subcellular localization of these proteins was determined in whole cells using optical fluorescent microscopy. Gamete pre-incubation with anti-E-cad (ECCD-1) or N-cad (H-63) antibodies resulted in decreased (p < 0.05) In Vitro Fertilization (IVF) rates, when using both cumulus-oocytes complexes and cumulus-free oocytes. Moreover, IVF assays done with denuded oocytes and either antibodies or blocking peptides against E-cad and N-cad led to lower (p < 0.05) fertilization rates. When assessing each step, penetration of the cumulus mass was lower (p < 0.05) when spermatozoa were pre-incubated with ECCD-1 or blocking peptides towards E-cad or towards both E- and N-cad. Moreover, sperm-oolemma binding was impaired (p < 0.0005) after sperm pre-incubation with E-cad antibody or blocking peptide towards E-cad, N-cad or both proteins. Finally, sperm-oocyte fusion was lower (p < 0.05) after sperm pre-incubation with either antibody or blocking peptide against E-cad or N-cad. Our studies demonstrate the expression of members of the adherent complex in the murine model, and the use of antibodies and specific peptides revealed E-cad and N-cad participation in mammalian fertilization.

Author(s):  
Er-Meng Gao ◽  
Bongkoch Turathum ◽  
Ling Wang ◽  
Di Zhang ◽  
Yu-Bing Liu ◽  
...  

AbstractThis study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.


Author(s):  
Valeria Merico ◽  
Silvia Garagna ◽  
Maurizio Zuccotti

The presence of cumulus cells (CCs) surrounding ovulated eggs is beneficial to in vitro fertilization and preimplantation development outcomes in several mammalian species. In the mouse, this contribution has a negligible effect on the fertilization rate; however, it is not yet clear whether it has positive effects on preimplantation development. Here, we compared the rates of in vitro fertilization and preimplantation development of ovulated B6C3F1 CC-enclosed vs. CC-free eggs, the latter obtained either after a 5 min treatment in M2 medium containing hyaluronidase or after 5–25 min in M2 medium supplemented with 34.2 mM EDTA (M2-EDTA). We found that, although the maintenance of CCs around ovulated eggs does not increment their developmental rate to blastocyst, the quality of the latter is significantly enhanced. Most importantly, for the first time, we describe a further quantitative and qualitative improvement, on preimplantation development, when CC-enclosed eggs are isolated from the oviducts in M2-EDTA and left in this medium for a total of 5 min prior to sperm insemination. Altogether, our results establish an important advancement in mouse IVF procedures that would be now interesting to test on other mammalian species.


2019 ◽  
Vol 191 (12) ◽  
pp. 40-44
Author(s):  
A. Barkova ◽  
M. Modorov ◽  
G. Isaeva ◽  
A. Krivonogova

Abstract. To carry out genome editing in cattle, an effective and well-functioning system for obtaining gametes, fertilizing eggs and their cryopreservation is necessary. Aim of the work: review and research of present-day existing methods of obtaining, insemination and cryopreservation of donor material, in order to provide genome editing in cows. Methods and materials. The work is completed according to the theme No. 0532-2019-0001 “Development of complex technology of marker-based genome selection of agricultural animals” within State Order of Ministry of Education and Science of the Russian Federation. The analysis of open scientific literature on the issues of in vitro fertilization in animals, cryopreservation of oocytes and embryons, sperm preparation and methods of insemination of cows’ oocytes, and cryopreservation of oocytes and embryons of animals is done. Features of the preparation of biological material of cattle for genome editing by microinjection into ooplasm are described. Results of research and duscussion. At present time there are two ways to obtain donor material from cattle: from live animals and taking ovaries after slaughtering cows. Material transportation is carried out at a temperature of 30–37 °C depending on the distance to the laboratory and expected time period of transportation. Oocyte-cumulus complexes can be removed by ovarian dissection and aspiration of visible follicles. In both cases, immature eggs are predominantly obtained. Subsequent ripening is carried out in vitro using special media in a CO2 incubator. The culture medium for oocyte maturation should contain hormones that mimic the peak of LH (luteinizing hormone), which occurs in vivo during the maturation of oocytes before ovulation. To accumulate a certain number of eggs at the stage of MII, it is recommended to carry out their cryopreservation by the method of vitrification, having previously released the oocyte from the cumulus cells. After thawing, oocytes need to be incubated for 2–3 hours 38.5 °C in 5–6.5% CO2 to restore the spindle. In order to make editing more effective, the introduction of genetic material is recommended to be carried out in parallel with the fertilization method “icsi”. In humans, mice and rabbits, an injection of sperm into the cytoplasm is sufficient to activate the oocyte, however, in cattle, just micro-injection of the sperm is not enough and often the male pronucleus does not form. To solve the problem, various methods are used, including freezing-thawing of sperm, resulting in damage of a membrane, or addition of heparin-glutathione into the medium that increases decondensation of the sperm DNA.


2018 ◽  
Vol 104 (5) ◽  
pp. 1667-1676 ◽  
Author(s):  
Elie Hobeika ◽  
Marah Armouti ◽  
Hamsini Kala ◽  
Michele A Fierro ◽  
Nicola J Winston ◽  
...  

Abstract Context The role of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) on aromatase regulation is poorly understood in humans. Objective Determine GDF9 and BMP15 effects on FSH stimulation of estradiol production in primary human cumulus granulosa cells (GCs). We hypothesized that the combination of GDF9 and BMP15 potentiates FSH-induced aromatase expression. Design Primary human cumulus GCs in culture. Setting University infertility center. Patients or Other Participants GCs of 60 women undergoing in vitro fertilization were collected. Interventions Cells were treated with GDF9 and/or BMP15 (GB) in the presence or absence of FSH, dibutyryl cAMP, or SMAD inhibitors. Main Outcome Measures Promoter activity, mRNA, protein, and estradiol levels were quantified. Results FSH and GB treatment increased CYP19A1 promoter activity, mRNA, and protein levels as well as estradiol when compared with cells treated with FSH only. GB treatment potentiated cAMP stimulation of aromatase and IGF2 stimulation by FSH. GB effects were inhibited by SMAD3 inhibitors and IGF1 receptor inhibitors. GB, but not FSH, stimulates SMAD3 phosphorylation. Conclusion The combination of GDF9 and BMP15 potently stimulates the effect of FSH and cAMP on CYP19a1 promoter activity and mRNA/protein levels. These effects translate into an increase in estradiol production. This potentiation seems to occur through activation of the SMAD2/3 and SMAD3 signaling pathway and involves, at least in part, the effect of the IGF system.


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


2011 ◽  
Vol 23 (1) ◽  
pp. 211
Author(s):  
K. R. Babu ◽  
R. Sharma ◽  
K. P. Singh ◽  
A. George ◽  
M. S. Chauhan ◽  
...  

Ovarian nitric oxide (NO) and that produced within the oocytes and embryos have been reported to play important roles in oocyte meiotic maturation and embryo development. Production of NO is catalyzed by NO synthase (NOS), which exists in 3 isoforms, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms and the inducible (iNOS) isoform. We have previously shown that low concentrations of NO stimulate and high concentrations inhibit embryo development, and that endogenous NO produced by iNOS is necessary for optimal embryo development in the buffalo. The present study was aimed at localizing different isoforms of NOS and examining their relative mRNA abundance in buffalo oocytes and embryos. Oocytes from slaughterhouse ovaries were subjected to in vitro maturation in 100-μL droplets (10 to 15 oocytes/droplet) of in vitro maturation medium (TCM-199 + 10% FBS + 5 μg mL–1 of pFSH + 1 μg mL–1 of oestradiol-17β + 0.81 mM sodium pyruvate + 10% buffalo follicular fluid + 50 μg mL–1 of gentamicin) for 24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. In vitro fertilization was carried out by incubating in vitro-matured oocytes with 2 to 4 million spermatozoa mL–1 for 18 h. The presumed zygotes were cultured on original beds of cumulus cells in in vitro culture medium (mCR2aa + 0.6% BSA + 10% FBS) for up to 8 days post-insemination. Immature and in vitro-matured oocytes and embryos at the 2-cell, 4-cell, 8- to 16-cell, morula, and blastocyst stages were examined for the presence of NOS isoforms by indirect immunofluorescence staining using epifluorescence microscopy and RT-PCR. Each experiment was repeated in triplicate, and data were analysed using one-way ANOVA, after arcsine transformation of percentage values. Expression of all 3 NOS isoforms was detected inside the cytoplasm, in all the stages of oocytes and embryos examined, by both immunofluorescence and RT-PCR. Abundance of the iNOS transcript was significantly higher (P ≤ 0.01) in the morula and blastocyst stages compared with that in immature and in vitro-matured oocytes and in embryos at the 2-cell, 4-cell, and 8- to 16-cell stages, indicating that its expression was up-regulated at the 8- to 16-cell stage. The expression of eNOS was significantly higher (P ≤ 0.05) in the immature and mature oocytes and in 8- to 16-cell stage embryos, morulae, and blastocysts than in the early-cleavage embryos at the 2- and 4-cell stages, indicating that it was down-regulated after fertilization and was up-regulated again at the 8- to 16-cell stage. Abundance of the nNOS transcript was not significantly different among all the stages of oocytes and embryos examined. These results demonstrate that different NOS isoforms are expressed in a dynamic manner during embryonic development in the buffalo. The role of an increase in expression of iNOS and eNOS at the 8- to 16-cell stage, at which a developmental block occurs in this species, needs to be examined.


2015 ◽  
Vol 27 (1) ◽  
pp. 217
Author(s):  
E. Mellisho ◽  
V. Rivas ◽  
J. Ruiz ◽  
G. Mamani

In alpacas, improvement of reproductive efficiency of male camelids is limited by the small size of the testes, extended period of ejaculation, and low quality of semen. This study was designed to determine the effect of 2 sperm preparation treatments before IVF on the cleavage rate. The sperm was obtained by slicing the head of the epididymis of slaughtered male alpacas (n = 8), diluting in Tris-yolk-glycerol, and freezing with the slow-cooling method. Frozen semen straws per each male were thawed in a water bath at 37°C for 15 s and evaluated for percentage of progressive motility (32 ± 8.6%) and concentration (66.5 ± 24 × 106 sperm mL–1) post-thawing. Sperm selection by the swim-up method was performed by centrifugation at 1077 × g for 5 min with washing sperm medium eliminating the supernatant; sperm were settled in inclined tube with fertilization medium (without capacitating agent) for 60 min, after which 100 μL from the surface was recovered for use in IVF. The washing method consisted in repeated washing (twice) of sperm in washing sperm medium and fertilization medium by centrifugation at 1077 × g for 5 and 3 min, respectively, and recovery of 50 μL from the bottom of the tube for use in IVF. Sperm selected by swim-up or washing methods had similar characteristics of progressive motility (18 and 23%); however, the concentration was higher for the washing v. swim-up method (52 v. 14 × 106 sperm mL–1, respectively). Cumulus-oocyte complexes (COC) were recovered from 278 ovaries of alpacas killed at abattoirs and classified (Grade 1 and 2) for in vitro maturation (38.5°C at 5% CO2 in air for 27 h in 50 μL of 10 COC per drop). A total of 839 oocytes cultured for 27 h in maturation medium were partially stripped out of cumulus cells by gentle aspiration with a pipette. Sperm suspensions in Fert TALP medium (5 μL) from each treatment group were added to each fertilization drop with 10 oocytes per drop of 45 μL obtaining a final concentration of 10 × 106 sperm mL–1 and cultivated for 72 h until their evaluation. The data for the 13 repetitions of the rate of cleavage (2 to 8 cells) were converted to angular values (angle = arcsin √%) with the object of normalizing the distribution of the data; the analysis of variance was performed (complete randomised design with sub-sampling, P < 0.05) using SAS® version 8.0 for Windows. The rate of cleavage (cell division) did not show statistical differences (P = 0.67) for the swim-up method (37%; 155/421) v. washing method (35%; 147/418). The methods of sperm selection (swim-up and washing) did not affect the rate of IVF.


Sign in / Sign up

Export Citation Format

Share Document