scholarly journals Modulation of Cell–Cell Interactions in Drosophila Oocyte Development

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 274
Author(s):  
Matthew Antel ◽  
Mayu Inaba

The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.

Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1166-1174 ◽  
Author(s):  
Sergio R. Ojeda ◽  
Alejandro Lomniczi ◽  
Claudio Mastronardi ◽  
Sabine Heger ◽  
Christian Roth ◽  
...  

The initiation of mammalian puberty requires an increase in pulsatile release of GnRH from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication. As the neuronal and glial excitatory inputs to the GnRH neuronal network increase, the transsynaptic inhibitory tone decreases, leading to the pubertal activation of GnRH secretion. The excitatory neuronal systems most prevalently involved in this process use glutamate and the peptide kisspeptin for neurotransmission/neuromodulation, whereas the most important inhibitory inputs are provided by γ-aminobutyric acid (GABA)ergic and opiatergic neurons. Glial cells, on the other hand, facilitate GnRH secretion via growth factor-dependent cell-cell signaling. Coordination of this regulatory neuronal-glial network may require a hierarchical arrangement. One level of coordination appears to be provided by a host of unrelated genes encoding proteins required for cell-cell communication. A second, but overlapping, level might be provided by a second tier of genes engaged in specific cell functions required for productive cell-cell interaction. A third and higher level of control involves the transcriptional regulation of these subordinate genes by a handful of upper echelon genes that, operating within the different neuronal and glial subsets required for the initiation of the pubertal process, sustain the functional integration of the network. The existence of functionally connected genes controlling the pubertal process is consistent with the concept that puberty is under genetic control and that the genetic underpinnings of both normal and deranged puberty are polygenic rather than specified by a single gene. The availability of improved high-throughput techniques and computational methods for global analysis of mRNAs and proteins will allow us to not only initiate the systematic identification of the different components of this neuroendocrine network but also to define their functional interactions.


Author(s):  
Stefania Pagliari ◽  
Vladimir Vinarsky ◽  
Fabiana Martino ◽  
Ana Rubina Perestrelo ◽  
Jorge Oliver De La Cruz ◽  
...  

Abstract The tight regulation of cytoskeleton dynamics is required for a number of cellular processes, including migration, division and differentiation. YAP–TEAD respond to cell–cell interaction and to substrate mechanics and, among their downstream effects, prompt focal adhesion (FA) gene transcription, thus contributing to FA-cytoskeleton stability. This activity is key to the definition of adult cell mechanical properties and function. Its regulation and role in pluripotent stem cells are poorly understood. Human PSCs display a sustained basal YAP-driven transcriptional activity despite they grow in very dense colonies, indicating these cells are insensitive to contact inhibition. PSC inability to perceive cell–cell interactions can be restored by tampering with Tankyrase enzyme, thus favouring AMOT inhibition of YAP function. YAP–TEAD complex is promptly inactivated when germ layers are specified, and this event is needed to adjust PSC mechanical properties in response to physiological substrate stiffness. By providing evidence that YAP–TEAD1 complex targets key genes encoding for proteins involved in cytoskeleton dynamics, we suggest that substrate mechanics can direct PSC specification by influencing cytoskeleton arrangement and intracellular tension. We propose an aberrant activation of YAP–TEAD1 axis alters PSC potency by inhibiting cytoskeleton dynamics, thus paralyzing the changes in shape requested for the acquisition of the given phenotype.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Lu ◽  
Yifan Sha ◽  
Tiago C. Silva ◽  
Antonio Colaprico ◽  
Xiaodian Sun ◽  
...  

Cell–cell interactions (CCIs) and cell–cell communication (CCC) are critical for maintaining complex biological systems. The availability of single-cell RNA sequencing (scRNA-seq) data opens new avenues for deciphering CCIs and CCCs through identifying ligand-receptor (LR) gene interactions between cells. However, most methods were developed to examine the LR interactions of individual pairs of genes. Here, we propose a novel approach named LR hunting which first uses random forests (RFs)-based data imputation technique to link the data between different cell types. To guarantee the robustness of the data imputation procedure, we repeat the computation procedures multiple times to generate aggregated imputed minimal depth index (IMDI). Next, we identify significant LR interactions among all combinations of LR pairs simultaneously using unsupervised RFs. We demonstrated LR hunting can recover biological meaningful CCIs using a mouse cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) dataset and a triple-negative breast cancer scRNA-seq dataset.


2020 ◽  
Author(s):  
Yingxin Lin ◽  
Lipin Loo ◽  
Andy Tran ◽  
Cesar Moreno ◽  
Daniel Hesselson ◽  
...  

AbstractCOVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected cells within the lung, and of protective or dysfunctional immune responses to the virus, is critical to effectively treat these patients. Currently, our understanding of cell-cell interactions across different disease states, and how such interactions may drive pathogenic outcomes, is incomplete. Here, we developed a generalizable workflow for identifying cells that are differentially interacting across COVID-19 patients with distinct disease outcomes and use it to examine five public single-cell RNA-seq datasets with a total of 85 individual samples. By characterizing the cell-cell interaction patterns across epithelial and immune cells in lung tissues for patients with varying disease severity, we illustrate diverse communication patterns across individuals, and discover heterogeneous communication patterns among moderate and severe patients. We further illustrate patterns derived from cell-cell interactions are potential signatures for discriminating between moderate and severe patients.


2011 ◽  
Vol 18 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie L.K. Bowers ◽  
William A. McFadden ◽  
Thomas K. Borg ◽  
Troy A. Baudino

AbstractNormal cardiac function is maintained through dynamic interactions of cardiac cells with each other and with the extracellular matrix. These interactions are important for remodeling during cardiac growth and pathophysiological conditions. However, the precise mechanisms of these interactions remain unclear. In this study we examined the importance of desmoplakin (DSP) in cardiac cell-cell interactions. Cell-cell communication in the heart requires the formation and preservation of cell contacts by cell adhesion junctions called desmosome-like structures. A major protein component of this complex is DSP, which plays a role in linking the cytoskeletal network to the plasma membrane. Our laboratory previously generated a polyclonal antibody (1611) against the detergent soluble fraction of cardiac fibroblast plasma membrane. In attempting to define which proteins 1611 recognizes, we performed two-dimensional electrophoresis and identified DSP as one of the major proteins recognized by 1611. Immunoprecipitation studies demonstrated that 1611 was able to directly pulldown DSP. We also demonstrate that 1611 and anti-DSP antibodies co-localize in whole heart sections. Finally, using a three-dimensional in vitro cell-cell interaction assay, we demonstrate that 1611 can inhibit cell-cell interactions. These data indicate that DSP is an important protein for cell-cell interactions and affects a variety of cellular functions, including cytokine secretion.


Sign in / Sign up

Export Citation Format

Share Document