scholarly journals Microstructure, Mechanical Properties and Tribological Behavior of Magnetron-Sputtered MoS2 Solid Lubricant Coatings Deposited under Industrial Conditions

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 455
Author(s):  
Armin Seynstahl ◽  
Sebastian Krauß ◽  
Erik Bitzek ◽  
Bernd Meyer ◽  
Benoit Merle ◽  
...  

Depositing MoS2 coatings for industrial applications involves rotating the samples during the PVD magnetron sputtering process. Here, we show that a 3-fold substrate rotation, along a large target–substrate distance given by the deposition unit, introduces porosity inside the coatings. The mechanical properties and wear behavior strongly correlate with the degree of porosity, which, in turn, depends on the temperature and the rotational speed of the substrate. Ball-on-disk tests and nanoindentation wear experiments show a consistent change in tribological behavior; first, a compaction of the porous structure dominates, followed by wear of the compacted material. Compaction was the main contributor to the volume loss during the running-in process. Compared to a dense coating produced without substrate rotation, the initially porous coatings showed lower hardness and a distinct running-in behavior. Tribological lifetime experiments showed good lubrication performance after compaction.

Author(s):  
FA Essa ◽  
Qiaoxin Zhang ◽  
Xingjiu Huang ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
Mohamed Kamal Ahmed Ali ◽  
...  

Recent strides in contact mechanics of M50 steel offer unique opportunities for better and more control of its tribological behavior and mechanical properties under different contact and surrounding conditions. Most researchers have focused on the solid lubricants on M50 steel as the key strategy for improving the tribological properties. In this paper, we have selected a wide range of previous late studies to discuss the different mechanisms leading to an improvement in the tribological properties of M50 steel via solid lubricants. A discussion of M50 steel industrial applications is also reviewed. The main objective is to develop an exhaustive understanding of the tribological behavior of M50 steel with solid lubricant additives under different conditions and also provide some prospects to be considered for future work.


Author(s):  
Masanori Iwaki ◽  
Thierry Le Mogne ◽  
Julien Fontaine ◽  
Jean-Michel Martin

Among diamond-like carbon (DLC) coatings, hydrogenated amorphous carbon (a-C:H) coatings are of great interest since some of them may exhibit coefficients of friction in the millirange, so-called “superlow friction” in ultrahigh vacuum. However, there are still many points to be clarified and improved to employ them as solid lubricant for actual vacuum applications. For example, in space environment solid lubricants are required to function at both low and high temperature ranging from −150 to 100°C. To apply them as solid lubricant in such an extreme environment, it is necessary to know the evolution of the tribological behavior in temperature, leading to their application limit. Furthermore, tribological behavior of a-C:H coatings is known to depend on tribochemistry and on mechanical properties like viscoplasticity. Since both could be affected by temperature, a better understanding of superlow friction mechanisms is expected from experiments at various temperatures. In this present work, pin-on-disk reciprocating friction tests were conducted at various temperature conditions ranging from −130 to 300°C under ultrahigh vacuum (10−7Pa) to study the effect of temperature on the coefficient of friction of an a C:H coated flat mated against steel (AISI 52100) pins. For all temperatures, superlow friction regime could be reached, as it was observed usually at room temperature for this sample. However, an effect of temperature is evidenced on the duration of “running-in” phase, i.e. the number of cycles required to reach a superlow friction regime. The duration becomes shorter at higher temperatures and longer at lower temperatures. Also, the application limit in temperature is found between 200 and 300°C, at which the friction coefficient slowly increases after running-in, to reach values above 0.01. In light of these results, the mechanisms of superlow friction are discussed in terms of tribochemistry and mechanical properties of the coating.


Nano Hybrids ◽  
2016 ◽  
Vol 10 ◽  
pp. 14-19 ◽  
Author(s):  
S. Nallusamy

Now a days composite material plays an important role in many industrial applications due to their excellent mechanical properties. Presently researchers are making composite materials using various filler materials to characterize the wear behavior of the composite which is used as a machine component in various industrial applications and in machine house hold articles for daily use to highly sophisticated applications. This is due to the proven fact that composite materials acquire higher strength to weight ratio. In this investigation Nano composites of E-Glass fiber/Multi walled carbon nano tube were prepared by the technique of hand layup. The glass fiber used for current investigation is E-glass fiber bi-directional of 45 degree orientation. The composite material samples were prepared in the form of a plate with a thickness of 4 mm. The fabricated composite materials were cut into analogous profiles as per ASTM for tensile and flexural testing analysis. This investigation reveals that the growth of Multi Walled Carbon Nano Tube (MWCNT) particles improves considerably the mechanical properties even if the fabrication is done by manual method like the technique of hand layup.


Author(s):  
Wolfgang Tillmann ◽  
Alexandra Wittig ◽  
Dominic Stangier ◽  
Carl-Arne Thomann ◽  
Jörg Debus ◽  
...  

AbstractModifying MoS2 thin films by additional elements shows great potential in order to adjust the property profile and to meet the increasing requirements regarding high wear resistance and low friction properties of industrial components. Within that context, MoSx:N:Mo thin films were deposited by a reactive hybrid dcMS/HiPIMS process. By systematically increasing the Mo target cathode power, an investigation of the structural and the mechanical properties was conducted to understand the evolution of the tribological behavior. A low Mo target cathode power of 1 kW is related to the formation of the preferential (002) MoS2 basal-plane and thus a low friction with µ = 0.2. With an increasing amount of Mo, the film loses its solid lubricant MoS2 properties and a nitride constitution of the thin film is developing due to the formation of crystalline Mo and MoN phases. Related to this transformation, the hardness and elastic modulus are increased, but the adhesion and the tribological properties are impaired. The film loses its plasticity and the generated film material is directly removed from the contact area during the sliding contact.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Fatih Aydin ◽  
M. Emre Turan

Abstract The goal of the study is to examine the dry sliding wear behavior of pure Mg and Mg/nano-boron nitride (BN) composite at elevated temperatures. The wear behavior of the samples was evaluated under loads of 5, 10, and 20 N, at sliding speed of 80, 130, and 180 mm s−1 and at temperatures of 25, 100, and 175 °C. The examination of worn surface, counterface, and wear debris was performed. The results showed that nano-BN particles lead to substantial enhancement of wear resistance for both room and elevated temperatures. Mg/0.25 BN has lower coefficient of friction values due to the presence of BN which act as solid lubricant. The wear mechanisms are thermal softening, melting, oxidation, abrasion, and delamination.


2011 ◽  
Vol 304 ◽  
pp. 6-11 ◽  
Author(s):  
Xiao Qian Qi ◽  
Xu Ping Zhang

Al-matrix self-lubricating which added MoS2 as solid lubricant was prepared by casting under variation in content of Si、Fe、Mn、MoS2、Cr3C2. Friction and wear behavior were investigated on MPX-2000 friction and abrasion machine. The microscopic structure and phases were analyzed by metallographic microscopic and XRD. The results show that the main factor influencing friction coefficient is Si, it can reduce the wear rate. Addition of MoS2 can reduce friction coefficient, Fe is used to improve the mechanical properties. Cr3C2 enhances the wear resistance.


2019 ◽  
Vol 9 (22) ◽  
pp. 4896 ◽  
Author(s):  
María T. Hernández-Sierra ◽  
Micael G. Bravo-Sánchez ◽  
José E. Báez ◽  
Luis D. Aguilera-Camacho ◽  
J. Santos García-Miranda ◽  
...  

Although much has been learned and investigated about environmentally friendly lubricants in recent years, several issues remain critical to their use in specific applications. A key point that could be limiting their utilization is that the effect of green lubricants on the tribological and mechanical properties of the elements has not been thoroughly studied since such attributes determine their performance in industrial applications. For this reason, in this research, the effect of green lubrication on the tribological and hardness properties of AISI 4140 steel was studied. The performance of three bio-based lubricants was studied and compared to that of five of the most representative lubricants. First, the lubricants were chemically and physically characterized. Then, the effect of each lubricant on the friction and wear behavior of the system was analyzed by kinetic friction coefficient, wear rate calculations, and microhardness measurements. In general, the bio-based lubricants exhibited the lowest values of friction and wear. Further the mechanical properties of the systems lubricated by these lubricants were not affected or were affected to a lesser degree.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Carlton J. Reeves ◽  
Arpith Siddaiah ◽  
Pradeep L. Menezes

The sustainability of biolubricants as green alternatives for industrial and machinery lubrication is questionable due to their unreliable oxidative stability, high pour point, and easy accumulation of contaminants that affect their tribological performance. Bio-based ionic liquid (IL) lubricants, which are environmentally friendly liquid state salts, have overcome these concerns related to conventional biolubricants. The present study investigates the effect of varying cation–anion moieties in ILs to understand their tribological performance and industrial viability. The industrial viability was analyzed by scaling their friction and wear behaviors against conventional biolubricants, and petroleum-based oils. The study investigated both bio- and nonbio-based ILs. Among the ILs examined, P666,14Saccharinate, P666,14Salicyate, and P666,14Benzoate were found to have superior tribological properties. The presence of large alkyl cation chain length and large aromatic anion ring size in ILs can effectively reduce friction and wear. This study details the mechanism by which the structural combinations of anion and cation in ILs define the tribological behavior of the bulk IL. Additionally, this study also highlights the environmentally benign nature of IL lubricants for possible industrial applications.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Alexander Mironov ◽  
Iosif Gershman ◽  
Eugeniy Gershman ◽  
Pavel Podrabinnik ◽  
Ekaterina Kuznetsova ◽  
...  

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.


Sign in / Sign up

Export Citation Format

Share Document