scholarly journals High Performance Accelerated Tests to Evaluate Hard Cr Replacements for Hydraulic Cylinders

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1511
Author(s):  
Emmanuel P. Georgiou ◽  
Dirk Drees ◽  
Greet Timmermans ◽  
Alexandros Zoikis-Karathanasis ◽  
Marta Pérez-Fernández ◽  
...  

To prolong the lifetime of hydraulic cylinders, a wear-resistant low-friction surface is required. Until now, hard Cr coatings were the best materials for this. However, in recent years, there has been an increasing pressure on the manufacturing of hard Cr plating and plated products, because of environmental and health hazards. The replacement of these coatings by alternatives has not been highly successful yet, because it requires extensive component testing, which is costly and time-consuming and thus not appropriate for material development. For this reason, there is a high need to develop tribological methods that simulate hydraulic cylinders’ component-testing closely. In addition, these new methods should also provide additional information (e.g., friction evolution) that can assist in the further development and optimization of alternative coatings. Having the above in mind and building on an existing method from the American Society for Testing and Materials (ASTM G133), a new test method that allows users to test directly on hydraulic cylinders was developed. This method can provide a relative ranking of both the wear resistance and frictional performance of alternative coatings in direct comparison to state-of-the-art hard Cr. Importantly, the method is repeatable and has a much shorter test duration than full-scale component tests, thereby accelerating material development significantly.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziqi Wang ◽  
Liubing Dong ◽  
Weiyuan Huang ◽  
Hao Jia ◽  
Qinghe Zhao ◽  
...  

AbstractOwing to the merits of low cost, high safety and environmental benignity, rechargeable aqueous Zn-based batteries (ZBs) have gained tremendous attention in recent years. Nevertheless, the poor reversibility of Zn anodes that originates from dendrite growth, surface passivation and corrosion, severely hinders the further development of ZBs. To tackle these issues, here we report a Janus separator based on a Zn-ion conductive metal–organic framework (MOF) and reduced graphene oxide (rGO), which is able to regulate uniform Zn2+ flux and electron conduction simultaneously during battery operation. Facilitated by the MOF/rGO bifunctional interlayers, the Zn anodes demonstrate stable plating/stripping behavior (over 500 h at 1 mA cm−2), high Coulombic efficiency (99.2% at 2 mA cm−2 after 100 cycles) and reduced redox barrier. Moreover, it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface. Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells, which deliver nearly 100% capacity retention after 2000 cycles at 4 A g−1 and high power density over 10 kW kg−1. This work provides a feasible route to the high-performance Zn anodes for ZBs.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 318
Author(s):  
Yang Li ◽  
Cheng Zhang ◽  
Zhiming Shi ◽  
Jingni Li ◽  
Qingyun Qian ◽  
...  

The explosive growth of data and information has increasingly motivated scientific and technological endeavors toward ultra-high-density data storage (UHDDS) applications. Herein, a donor−acceptor (D–A) type small conjugated molecule containing benzothiadiazole (BT) is prepared (NIBTCN), which demonstrates multilevel resistive memory behavior and holds considerable promise for implementing the target of UHDDS. The as-prepared device presents distinct current ratios of 105.2/103.2/1, low threshold voltages of −1.90 V and −3.85 V, and satisfactory reproducibility beyond 60%, which suggests reliable device performance. This work represents a favorable step toward further development of highly-efficient D−A molecular systems, which opens more opportunities for achieving high performance multilevel memory materials and devices.


2015 ◽  
Author(s):  
William A. Hockberger

The Quadrimaran was invented in France in the mid-1980s by Daniel Tollet. It was an inspired design and a radical departure from traditional ship design by a man from outside the marine industry unconstrained by industry technical practices and education. Technical experts could see it would entail more structure and subsystems than other high-performance vessels, but its promise was that those penalties would be more than offset by its claimed low power and fuel consumption. A prototype/demonstrator, Alexander, was built in 1990 and operated for five years carrying and impressing many hundreds of riders. Alexander performed beautifully and appeared to bear out what was claimed. Contracts for several Quadrimarans of different sizes came quickly, especially considering how conservative an industry this is. That was significantly due to Tollet's personal charisma and skill in selling riders on the dream of carrying passengers and freight over the water fast and in comfort, yet economically. Great skepticism prevailed in some quarters, especially among naval architects knowledgeable about AMVs (advanced marine vehicles) and early-stage whole-ship design. At technical meetings, one Quadrimaran principal would comment, for example, "Why would you carry freight across the Atlantic at 38 knots on 230,000 horsepower (a reference to the planned Fastship Atlantic TG-770) when you could do it at 60 knots on only 65,000 horsepower?" Listeners would ask how this could be possible, and he would assert again that the Quadrimaran could do it, but would decline to explain. Respected technical people were working with Tollet and his company and becoming convinced of the Quadrimaran's merit. Along with the contracts came engineers with experience in ship detail design and construction (very different from early-stage whole-ship design), or responsibilities for assessing and approving ships for service. Others were with engine and equipment suppliers. Their opinion that there was something unique and special about the Quadrimaran gave it credibility and influenced more people to accept the major claims made for it. Some dismissed the most extreme claims but still accepted the idea that the Quadrimaran was capable of unusually high performance - considerably less than was being claimed, perhaps, but high nevertheless. In hindsight it is clear the skeptics were right. Results never met expectations, nor could they have. In reality, the Quadrimaran has aspects that inherently prevent it from achieving the characteristics and performance its inventor believed attainable. It cannot be built in a commercially useful size and actually perform as intended. Why this is so will be explained. A crucial fact in the Quadrimaran's history is that Daniel Tollet and his close associates believed strongly that naval architects and engineers who had been immersed in working with the existing ship types would be unable to give the Quadrimaran the very different treatment they believed it required. (Their own educations and professional work were nontechnical.) Such people were excluded from the development of Quadrimaran designs, and the belated discovery of many fundamental technical problems can be attributed to this. The company Tollet established had a number of names over the years, and other associated entities were created at times for various purposes. In this paper they are referred to collectively as QIH (Quadrimaran International Holdings) so as not to confuse things unnecessarily. In 2004 QuadTech Marine LLC was established and acquired the Quadrimaran patent (US Patent No. 5,191,849) and related intellectual property from QIH. QuadTech laid out an extensive R&D program to close gaps in the technical background and address identified issues. In the process, additional information on earlier QIH projects and products was obtained and studied, which brought to light problems that significantly compromised the Quadrimaran's prospective performance and utility. The resulting much-reduced set of potential uses and users led the company to effectively stop pursuing Quadrimaran projects after 2009. (Note: The author was Chief Technology Officer for QuadTech Marine during 2006-9, studying the Quadrimaran and planning the R&D.)


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hamid Jahed ◽  
Mohammad Reza Faritus ◽  
Zeinab Jahed

Relieved strains due to drilling hole in a ring sample cut from an autofrettage cylinder are measured. Measured strains are then transformed to residual stresses using calibration constants and mathematical relations of elasticity based on ASTM standard recommendations (American Society for Testing and Materials, ASTM E 837-08, 2008, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” American Society for Testing and Materials). The hydraulic autofrettage is pressurizing a closed-end long cylinder beyond its elastic limits and subsequently removing the pressure. In contrast to three-dimensional stress state in the autofrettage tube, the stress measurement in hole drilling method is performed on a traction free surface formed from cutting the ring sample. The process of cutting the ring sample from a long autofrettaged tube is simulated using finite element method (FEM) and the redistribution of the residual stress due to the cut is discussed. Hence, transformation of the hole drilling measurements on the ring slice to the autofrettage residual stresses is revealed. The residual stresses are also predicted by variable material properties (VMP) method (Jahed, H., and Dubey, R. N., 1997, “An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field,” Trans. ASME J. Pressure Vessel Technol., 119, pp. 264–273) using real loading and unloading behavior of the test material. Prediction results for residual hoop stress agree very well with the measurements. However, radial stress predictions are less than measured values particularly in the middle of the ring. To remove the discrepancy in radial residual stresses, the measured residual hoop stress that shows a self-balanced distribution was taken as the basis for calculating residual radial stresses using field equations of elasticity. The obtained residual stresses were improved a lot and were in good agreement with the VMP solution.


2021 ◽  
Vol 3 (2) ◽  
pp. 276-285
Author(s):  
Brigita Suzanna ◽  
Irwan Lie Keng Wong ◽  
Monika Datu Mirring Palinggi

The purpose of this research is to determine the physical properties of clay soil and to analyze the effect of adding coconut shell charcoal ash to the clay soil. The soil samples used in this study came from Tanralili District, Maros Regency, two sample points were taken and the variations in the levels of addition of coconut shell charcoal ash is 0%, 4%, 6%, 8%, 10%. The test method used refers to ASTM (American Society for Testing Materials). The tests carried out were testing the physical properties of the soil in the form of moisture content, specific gravity, Atterberg boundaries, filter analysis, and hydrometer analysis, then a compaction test was carried out to determine the maximum soil density. The results of the test obtained a moisture content value of 28.811%, a specific gravity of 2.58 g / cm3 so that it is classified as organic clay. As well as the plasticity index value of 9.926% with moderate plasticity from the 7% -17% interval. Then from the test results of soil compaction testing with the addition of coconut shell ash, the dry density (gdry) equal to 0.862, 0.886, 0.914, 0.943, 0.962, this means that the soil sample experienced an increase in dry density (gdry) of 11.60%. From the research results it can be concluded that the addition of coconut shell charcoal ash can increase the value of soil dry density so that it can be used to increase the value of the carrying capacity of clay soil.


2010 ◽  
Vol 112 (1) ◽  
pp. 212-219 ◽  
Author(s):  
Joseph C. McClintock ◽  
Glenn P. Gravlee

Background Currently, residency programs lack objective predictors for passing the sequenced American Board of Anesthesiology (ABA) certification examinations on the first attempt. Our hypothesis was that performance on the ABA/American Society of Anesthesiologists In-Training Examination (ITE) and other variables can predict combined success on the ABA Part 1 and Part 2 examinations. Method The authors studied 2,458 subjects who took the ITE immediately after completing the first year of clinical anesthesia training and took the ABA Part 1 examination for primary certification immediately after completing residency training 2 yr later. ITE scores and other variables were used to predict which residents would complete the certification process (passing the ABA Part 1 and Part 2 examinations) in the shortest possible time after graduation. Results ITE scores alone accounted for most of the explained variation in the desired outcome of certification in the shortest possible time. In addition, almost half of the observed variation and most of the explained variance in ABA Part 1 scores was accounted for by ITE scores. A combined model using ITE scores, residency program accreditation cycle length, country of medical school, and gender best predicted which residents would complete the certification examinations in the shortest possible time. Conclusions The principal implication of this study is that higher ABA/ American Society of Anesthesiologists ITE scores taken at the end of the first clinical anesthesia year serve as a significant and moderately strong predictor of high performance on the ABA Part 1 (written) examination, and a significant predictor of success in completing both the Part 1 and Part 2 examinations within the calendar year after the year of graduation from residency. Future studies may identify other predictors, and it would be helpful to identify factors that predict clinical performance as well.


2008 ◽  
Vol 400-402 ◽  
pp. 137-143 ◽  
Author(s):  
Vinod Rajayogan ◽  
Obada Kayali

Determination of a realistic model for the estimation of autogenous shrinkage in plain cement mixtures has been an ongoing research among researchers in high performance concrete. While no standard test method exists for the determination of autogenous shrinkage, various researchers have designed different test methods for measurement of autogenous shrinkage. Current study involved the experimental determination of autogenous shrinkage using the test method developed by O.M.Jensen and co-workers, complimented with non-contact eddy current sensors. Measurements were conducted from as early as 1.5 hours from the time of casting. The samples were placed in a constant temperature chamber and the temperature of the sample was also monitored using a thermocouple. The study was carried out on plain cement mixtures at three water cement ratios of 0.25, 0.32 and 0.38. Measurements were also conducted on simple sealed prismatic samples but these measurements could only be collected after 24 hours of casting. The work is supplemented with CEMHYD3D simulations of the samples at similar water-cement ratios under sealed conditions so as to understand the development of the microstructure of the cement responsible for autogenous shrinkage. While experimental determination of internal relative humidity is quite difficult, data regarding chemical shrinkage, amount of water left and the development of the discontinuous capillary network from the simulations help to understand the determined experimental values of autogenous shrinkage. A detailed explanation on the causes of autogenous shrinkage and the basic mechanism responsible for it has been presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yoonseok Shin

Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.


Solar Energy ◽  
2002 ◽  
Author(s):  
Daryl R. Myers ◽  
Keith Emery ◽  
C. Gueymard

In 1982, the American Society for Testing and Materials (ASTM) adopted consensus standard direct-normal and global-tilted solar terrestrial spectra (ASTM E891/E892). These standard spectra were intended to evaluate photovoltaic (PV) device performance and other solar-related applications. The International Standards Organization (ISO) and International Electrotechnical Commission (IEC) adopted these spectra as spectral standards ISO 9845-1 and IEC 60904-3. Additional information and more accurately representative spectra are needed by today’s PV community. Modern terrestrial spectral radiation models, knowledge of atmospheric physics, and measured radiometric quantities are applied to develop new reference spectra for consideration by ASTM.


Author(s):  
Lichia Yiu ◽  
Raymond Saner

Since the 1990s, more and more corporate learning has been moved online to allow for flexibility, just-in-time learning, and cost saving in delivering training. This trend has been evolved along with the introduction of Web-based applications for HRM purposes, known as electronic Human Resource Management (e-HRM). By 2005, 39.67% of the corporate learning, among the ASTD (American Society for Training and Development) benchmarking forum companies, was delivered online in comparison to 10.5% in 2001. E-learning has now reached “a high level of (technical) sophistication, both in terms of instructional development and the effective management of resources” in companies with high performance learning function (ASTD, 2006, p.4). The cost per unit, reported by ASTD in its 2006 State of Industry Report, has been declining since 2000 despite the higher training hours received per employee thanks to the use of technology based training delivery and its scalability. However, the overall quality of e-learning either public available in the market or implemented at the workplace remains unstable.


Sign in / Sign up

Export Citation Format

Share Document