Tantalum-Titanium Oxynitride Thin Films Deposited by DC Reactive Magnetron Co-Sputtering: Mechanical, Optical, and Electrical Characterization
The possibility to tune the elemental composition and structure of binary Me oxynitride-type compounds (Me1Me2ON) could lead to attractive properties for several applications. For this work, tantalum-titanium oxynitride (TaTiON) thin films were deposited by DC reactive magnetron co-sputtering, with a –50 V bias voltage applied to the substrate holder and a constant substrate temperature of 100 °C. To increase or to decrease in a controlled manner, the Ti and Ta content in the co-sputtered films, the Ti and Ta target currents were varied between 0.00 and 1.00 A, in 0.25 A steps, while keeping the sum of the currents applied to the two targets at 1.00 A. The reactive gases flow, consisting of a nitrogen and oxygen gas mixture with a constant N2/O2 ratio (85%/15%), was also kept constant. The single-metal oxynitrides (TaON and TiON) showed a low degree of crystallinity, while all the other co-sputtered films revealed themselves to be essentially amorphous. These two films also exhibited higher adhesion to the metallic substrate. The TaON film showed the highest hardness value (14.8 GPa) and the TiON film a much lower one (8.8 GPa), while the co-sputtered coatings exhibited intermediary values. One of the most interesting findings was the significant increase in the O content when the Ti concentration surpassed the Ta one. This significantly influenced the optical characteristic of the films, but also their electrical properties. The sheet resistivity of the co-sputtered films is strongly dependent on the O/(Ta + Ti) atomic ratio.