scholarly journals Thermal and Quantum Fluctuation Effects in Quasiperiodic Systems in External Potentials

2019 ◽  
Vol 4 (4) ◽  
pp. 93
Author(s):  
Fabio Cinti ◽  
Tommaso Macrì

We analyze the many-body phases of an ensemble of particles interacting via a Lifshitz–Petrich–Gaussian pair potential in a harmonic confinement. We focus on specific parameter regimes where we expect decagonal quasiperiodic cluster arrangements. Performing classical Monte Carlo as well as path integral quantum Monte Carlo methods, we numerically simulate systems of a few thousand particles including thermal and quantum fluctuations. Our findings indicate that the competition between the intrinsic length scale of the harmonic oscillator and the wavelengths associated to the minima of the pair potential generically lead to a destruction of the quasicrystalline pattern. Extensions of this work are also discussed.

2001 ◽  
Vol 15 (10n11) ◽  
pp. 1447-1462 ◽  
Author(s):  
Y. ALHASSID

We discuss finite temperature quantum Monte Carlo methods in the framework of the interacting nuclear shell model. The methods are based on a representation of the imaginary-time many-body propagator as a superposition of one-body propagators describing non-interacting fermions moving in fluctuating auxiliary fields. Fermionic Monte Carlo calculations have been limited by a "sign" problem. A practical solution in the nuclear case enables realistic calculations in much larger configuration spaces than can be solved by conventional methods. Good-sign interactions can be constructed for realistic estimates of certain nuclear properties. We present various applications of the methods for calculating collective properties and level densities.


1999 ◽  
Vol 13 (05n06) ◽  
pp. 543-558 ◽  
Author(s):  
V. R. PANDHARIPANDE

We review recent developments in a few selected areas of the many-body theory of nuclei and neutron stars. The chosen topics are (i) femtometer toroidal structures in nuclei; (ii) modern models of nuclear forces; (iii) advances in the application of quantum Monte Carlo methods to nuclei; (iv) relativistic boost corrections to nuclear forces; (v) dense nucleon matter; (vi) kaon condensation in neutron star matter; and (vii) the nature of the transition from nucleon to quark matter at high density.


2014 ◽  
Vol 114 (10) ◽  
pp. 611-625 ◽  
Author(s):  
Sarah Wolf ◽  
Emanuele Curotto ◽  
Massimo Mella

2019 ◽  
Vol 10 (1) ◽  
pp. 337-356 ◽  
Author(s):  
Zi-Xiang Li ◽  
Hong Yao

Reliable simulations of correlated quantum systems, including high-temperature superconductors and frustrated magnets, are increasingly desired nowadays to further our understanding of essential features in such systems. Quantum Monte Carlo (QMC) is a unique numerically exact and intrinsically unbiased method to simulate interacting quantum many-body systems. More importantly, when QMC simulations are free from the notorious fermion sign problem, they can reliably simulate interacting quantum models with large system size and low temperature to reveal low-energy physics such as spontaneously broken symmetries and universal quantum critical behaviors. Here, we concisely review recent progress made in developing new sign-problem-free QMC algorithms, including those employing Majorana representation and those utilizing hot-spot physics. We also discuss applications of these novel sign-problem-free QMC algorithms in simulations of various interesting quantum many-body models. Finally, we discuss possible future directions of designing sign-problem-free QMC methods.


Sign in / Sign up

Export Citation Format

Share Document