Tunable Stokes Laser Based on KTiOPO4 Crystal
The characteristics of a tunable Stokes laser based on the cascaded stimulated polariton scattering and stimulated Raman scattering in KTiOPO4 crystal were studied experimentally and theoretically. When the pumping wavelength was 1064 nm, the Stokes laser output wavelength was able to be tuned discontinuously from 1112.08 nm to 1113.64 nm, from 1114.94 nm to 1115.77 nm, and from 1117.37 nm to 1119.92 nm, and the maximum output power appeared at 1118.86 nm. With a pulse repetition frequency of 7 kHz and a pump power of 6.0 W, the maximum output power of the Stokes laser reached 734 mW, and the corresponding diode to laser conversion efficiency was 12.2%. The rate equations describing the temporal evolutions of the fundamental and Stokes waves by noncollinear stimulated polariton scattering and the Stokes wave by collinear stimulated Raman scattering were derived. They were used to simulate the tunable Stokes laser. The calculated results were in agreement with the experimental results on the whole.