scholarly journals Low-Energy Optical Conductivity of TaP: Comparison of Theory and Experiment

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 567
Author(s):  
Alexander Yaresko ◽  
Artem V. Pronin

The ab-plane optical conductivity of the Weyl semimetal TaP is calculated from the band structure and compared to the experimental data. The overall agreement between theory and experiment is found to be best when the Fermi level is slightly (20 to 60 meV) shifted upwards in the calculations. This confirms a small unintentional doping of TaP, reported earlier, and allows a natural explanation of the strong low-energy (50 meV) peak seen in the experimental ab-plane optical conductivity: this peak originates from transitions between the almost parallel non-degenerate electronic bands split by spin-orbit coupling. The temperature evolution of the peak can be reasonably well reproduce by calculations using an analog of the Mott formula.

2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Sandeep Howlader ◽  
Surabhi Saha ◽  
Ritesh Kumar ◽  
Vipin Nagpal ◽  
Satyabrata Patnaik ◽  
...  

2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542017
Author(s):  
L. J. Zhang ◽  
S. Y. Wu ◽  
C. C. Ding ◽  
Y. K. Cheng

The anisotropic [Formula: see text] factors of the deoxygenated YBaCuO (Y123) are theoretically studied using the perturbation formulas of the [Formula: see text] factors for a tetragonally elongated octahedral [Formula: see text] cluster. The ligand orbital and spin-orbit coupling contributions are included from the cluster approach in view of covalency. The calculated [Formula: see text] factors show good agreement with the experimental data. The anisotropy of the [Formula: see text] factors is analyzed by considering the local tetragonal elongation distortion around this five-fold coordinated [Formula: see text] site in the deoxygenated Y123 system.


1975 ◽  
Vol 11 (1) ◽  
pp. 287-294 ◽  
Author(s):  
M. Singh ◽  
C. S. Wang ◽  
J. Callaway

2009 ◽  
Vol 64 (12) ◽  
pp. 834-836
Author(s):  
Chao Ni ◽  
Yi Huang ◽  
Maolu Du

Introducing the average covalent factor N and considering the interaction of the cubic crystal field, the spin-orbit coupling and Tree’s correction effects, the crystal field parameter Dq was calculated. Also the varying tendency of Dq with the bond length R was investigated. Using the complete diagonalizing method the energy levels of the fine structure of Ga2Se3:Co2+ single crystal were calculated and assigned. The calculated and assigned results are consistent with the experimental data


2016 ◽  
Vol 113 (5) ◽  
pp. 1180-1185 ◽  
Author(s):  
Shin-Ming Huang ◽  
Su-Yang Xu ◽  
Ilya Belopolski ◽  
Chi-Cheng Lee ◽  
Guoqing Chang ◽  
...  

Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin–orbit coupling and that, after the inclusion of spin–orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs.


2013 ◽  
Vol 68 (10-11) ◽  
pp. 709-714 ◽  
Author(s):  
Mohammadreza Pahlavani ◽  
Behnam Firoozi

Energy spectrum and wave functions are obtained numerically with a potential consisting of Woods-Saxon, Coulomb, and spin-orbit coupling parts for the nuclei 15O, 15N, 17O, and 17F. The radial parts of the wave functions are used to calculate some matrix elements of electromagnetic transitions. These results are applied to calculate half-lives of low-lying exited states in the one-particle 17O and 17F as well as in the one-hole 15O and 15N isotopes. The calculated half-lives are compared with available experimental and theoretical results based on harmonic oscillator wave functions and Weisskopf units. In comparison with the results calculated from the other methods, our results based on the Woods-Saxon potential indicate a satisfactory agreement with accessible experimental data.


Sign in / Sign up

Export Citation Format

Share Document