scholarly journals The Mechanical Properties and Elastic Anisotropies of Cubic Ni3Al from First Principles Calculations

Crystals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 307 ◽  
Author(s):  
Xinghe Luan ◽  
Hongbo Qin ◽  
Fengmei Liu ◽  
Zongbei Dai ◽  
Yaoyong Yi ◽  
...  

Ni3Al-based superalloys have excellent mechanical properties which have been widely used in civilian and military fields. In this study, the mechanical properties of the face-centred cubic structure Ni3Al were investigated by a first principles study based on density functional theory (DFT), and the generalized gradient approximation (GGA) was used as the exchange-correlation function. The bulk modulus, Young’s modulus, shear modulus and Poisson’s ratio of Ni3Al polycrystal were calculated by Voigt-Reuss approximation method, which are in good agreement with the existing experimental values. Moreover, directional dependences of bulk modulus, Young’s modulus, shear modulus and Poisson’s ratio of Ni3Al single crystal were explored. In addition, the thermodynamic properties (e.g., Debye temperature) of Ni3Al were investigated based on the calculated elastic constants, indicating an improved accuracy in this study, verified with a small deviation from the previous experimental value.

1967 ◽  
Vol 89 (1) ◽  
pp. 93-97
Author(s):  
J. R. Asay

The longitudinal and shear wave velocities in a polycrystalline sample of magnesium thorium alloy were measured by a pulse transmission technique as a function of temperature. Temperatures ranged from 25 C to about 350 deg C for longitudinal wave measurements and to about 220 deg C for shear measurements. The resulting velocity data were used to calculate various elastic properties of the material, including Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio. The resulting least squares fits for these data are: Longitudinal velocity, cl = 5.749 − 3.987 × 10−4T − 1.139 × 10−6T2mm/μsec; shear velocity, ct = 3.108 − 1.421 × 10−4T − 2.588 × 10−6T2mm/μsec; bulk modulus, B = 3.576 × 10″ − 2.744 × 107T + 1.187 × 105T2 dynes/cm2; Young’s modulus, E = 4.435 × 10″ − 1.415 × 107T = 6.037 × 105T2 dynes/cm2; shear modulus, G = 1.716 × 10″ − 7.994 × 106T − 2.619 × 105T2 dynes/cm2; Poisson’s ratio, σ = 0.293 − 6.459 × 10−6T + 3.392 × 10−7T2.


2010 ◽  
Vol 25 (3) ◽  
pp. 545-555 ◽  
Author(s):  
Uday Chippada ◽  
Bernard Yurke ◽  
Noshir A. Langrana

Besides biological and chemical cues, cellular behavior has been found to be affected by mechanical cues such as traction forces, surface topology, and in particular the mechanical properties of the substrate. The present study focuses on completely characterizing the bulk linear mechanical properties of such soft substrates, a good example of which are hydrogels. The complete characterization involves the measurement of Young's modulus, shear modulus, and Poisson's ratio of these hydrogels, which is achieved by manipulating nonspherical magnetic microneedles embedded inside them. Translating and rotating these microneedles under the influence of a known force or torque, respectively, allows us to determine the local mechanical properties of the hydrogels. Two specific hydrogels, namely bis-cross-linked polyacrylamide gels and DNA cross-linked polyacrylamide gels were used, and their properties were measured as a function of gel concentration. The bis-cross-linked gels were found to have a Poisson's ratio that varied between 0.38 and 0.49, while for the DNA-cross-linked gels, Poisson's ratio varied between 0.36 and 0.49. The local shear moduli, measured on the 10 μm scale, of these gels were in good agreement with the global shear modulus obtained from a rheology study. Also the local Young's modulus of the hydrogels was compared with the global modulus obtained using bead experiments, and it was observed that the inhomogeneities in the hydrogel increases with increasing cross-linker concentration. This study helps us fully characterize the properties of the substrate, which helps us to better understand the behavior of cells on these substrates.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 240
Author(s):  
Xianren Zeng ◽  
Shihui You ◽  
Linmei Li ◽  
Zhangli Lai ◽  
Guangyan Hu ◽  
...  

This article focuses on the elucidation of a three-dimensional model of the structure of anhydrite crystal (CaSO4). The structure parameters of anhydrite crystal were obtained by means of first principles after structure optimization at 0~120 MPa. In comparison with previous experimental and theoretical calculation values, the results we obtained are strikingly similar to the previous data. The elastic constants and physical parameters of anhydrite crystal were also studied by the first-principles method. Based on this, we further studied the Young’s modulus and Poisson’s ratio of anhydrite crystal, the anisotropy factor, the speed of sound, the minimum thermal conductivity and the hardness of the material. It was shown that the bulk modulus and Poisson’s ratio of anhydrite crystal rose slowly with increasing pressure. The anisotropy characteristics of the Young’s modulus and shear modulus of anhydrite crystal were consistent under various pressure levels, while the difference in the anisotropy characteristics of the bulk modulus appeared. The acoustic velocities of anhydrite crystal tended to be stable with increasing pressure. The minimum thermal conductivity remained relatively unchanged with increasing pressure. However, the material hardness declined gradually with increasing pressure.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
George Lucas Dias ◽  
Ricardo Rodrigues Magalhães ◽  
Danton Diego Ferreira ◽  
Bruno Henrique Groenner Barbosa

The knowledge of materials' mechanical properties in design during product development phases is necessary to identify components and assembly problems. These are problems such as mechanical stresses and deformations which normally cause plastic deformation, early fatigue or even fracture. This article is aimed to use particle swarm optimization (PSO) and finite element inverse analysis to determine Young's Modulus and Poisson's ratio from a cantilever beam, manufactured in ASTM A36 steel, subjected to a load of 19.6 N applied to its free end. The cantilever beam was modeled and simulated using a commercial FEA software. Constriction Factor Method (PSO variation) was used and its parameters were analyzed in order to improve errors. PSO results indicated Young's Modulus and Poisson's ratio errors of around 1.9% and 0.4%, respectively, when compared to the original material properties. Improvement in the data convergence and a reduction in the number of PSO iterations was observed. This shows the potentiality of using PSO along with Finite Element Inverse Analysis for mechanical properties evaluation.


2010 ◽  
Vol 160-162 ◽  
pp. 1691-1698 ◽  
Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
Peng Liu ◽  
Xu Liang Deng ◽  
Qing Cai ◽  
...  

This study aimed at investigating the effects of the post material properties on the maximum stress in the root and maximum deformation of the restorative system. Effects of material properties of fiber post on the maximum equivalent stress in the root and the maximum deformation of the restorative system were numerically investigated. Results show that the maximum equivalent stress in the root can be decreased by 8.3% and the maximum deformation of the restorative system decreased by 10% compared with corresponding maximum values if changing Young’s modulus, Shear modulus and Poisson’s ratio in the range studied here. The maximum equivalent stress in the root is more sensitive to Young’s modulus and Poisson’s ratio while the deformation of the restorative system is more seriously affected by the Shear modulus of the post material.


2010 ◽  
Vol 504 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Robert D. Schmidt ◽  
Jennifer E. Ni ◽  
Eldon D. Case ◽  
Jeffery S. Sakamoto ◽  
Daniel C. Kleinow ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 574-580 ◽  
Author(s):  
Takahiro Namazu ◽  
Shozo Inoue ◽  
Daisuke Ano ◽  
Keiji Koterazawa

This paper focuses on investigating mechanical properties of micron-thick polycrystalline titanium nitride (TiN) films. We propose a new technique that can directly measure lateral strain of microscale crystalline specimen by X-ray diffraction (XRD) during tensile test. The XRD tensile test can provide not only Young’s modulus but also Poisson’s ratio of TiN films. Micron-thick TiN films were deposited onto both surfaces of single crystal silicon (Si) specimen by r.f. reactive magnetron sputtering. Young’s modulus and Poisson’s ratio of Si specimen obtained by XRD tensile tests were in good agreement with analytical values. TiN films deposited at Ar partial pressure of 0.7Pa had the average values of 290GPa and 0.36 for Young’s modulus and Poisson’s ratio. The elastic mechanical properties of TiN films gradually decreased down to 220GPa and 0.29 with increasing Ar partial pressure up to 1.0Pa, regardless of film thickness. The change in the film properties with Ar partial pressure would be attributed to the change in the film density.


Sign in / Sign up

Export Citation Format

Share Document