scholarly journals A Symmetric Image Encryption Algorithm Based on a Coupled Logistic–Bernoulli Map and Cellular Automata Diffusion Strategy

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 504 ◽  
Author(s):  
Wei Zhang ◽  
Zhiliang Zhu ◽  
Hai Yu

In this paper, the properties of the classical confusion–substitution structure and some recently proposed pseudorandom number generators using one-dimensional chaotic maps are investigated. To solve the low security problem of the original structure, a new bit-level cellular automata strategy is used to improve the sensitivity to the cryptosystem. We find that the new evolution effects among different generations of cells in cellular automata can significantly improve the diffusion effect. After this, a new one-dimensional chaotic map is proposed, which is constructed by coupling the logistic map and the Bernoulli map (LBM). The new map exhibits a much better random behavior and is more efficient than comparable ones. Due to the favorable properties of the new map and cellular automata algorithm, we propose a new image-encryption algorithm in which three-dimensional bit-level permutation with LBM is employed in the confusion phase. Simulations are carried out, and the results demonstrate the superior security and high efficiency of the proposed scheme.

2021 ◽  
Vol 11 (23) ◽  
pp. 11206
Author(s):  
Shenli Zhu ◽  
Xiaoheng Deng ◽  
Wendong Zhang ◽  
Congxu Zhu

In the edge computing and network communication environment, important image data need to be transmitted and stored securely. Under the condition of limited computing resources, it is particularly necessary to design effective and fast image encryption algorithms. One-dimensional (1D) chaotic maps provide an effective solution for real-time image encryption, but most 1D chaotic maps have only one parameter and a narrow chaotic interval, which has the disadvantage of security. In this paper, a new compound 1D chaotic map composed of a logistic map and tent map is proposed. The new system has two system parameters and an arbitrarily large chaotic parameter interval, and its chaotic signal is evenly distributed in the whole value space so it can improve the security in the application of information encryption. Furthermore, based on the new chaotic system, a fast image encryption algorithm is proposed. The algorithm takes the image row (column) as the cyclic encryption unit, and the time overhead is greatly reduced compared with the algorithm taking the pixel as the encryption unit. In addition, the mechanism of intermediate key associated with image content is introduced to improve the ability of the algorithm to resist chosen-plaintext attack and differential attack. Experiments show that the proposed image encryption algorithm has obvious speed advantages and good cryptographic performance, showing its excellent application potential in secure network communication.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hui Liu ◽  
Bo Zhao ◽  
Jianwen Zou ◽  
Linquan Huang ◽  
Yifan Liu

The popularization of 5G and the development of cloud computing further promote the application of images. The storage of images in an untrusted environment has a great risk of privacy leakage. This paper outlines a design for a lightweight image encryption algorithm based on a message-passing algorithm with a chaotic external message. The message-passing (MP) algorithm allows simple messages to be passed locally for the solution to a global problem, which causes the interaction among adjacent pixels without additional space cost. This chaotic system can generate high pseudorandom sequences with high speed performance. A two-dimensional logistic map is utilized as a pseudorandom sequence generator to yield the external message sets of edge pixels. The external message can affect edge pixels, and then adjacent pixels interact with each other to produce an encrypted image. A MATLAB simulation shows the cipher-image performs fairly uniform distribution and has acceptable information entropy of 7.996749. The proposed algorithm reduces correlation coefficients from plain-image 1 to its cipher-image 0, which covers all of the plain-image characters with high computational efficiency (speed = 18.200374 Mbit/s). Theoretical analyses and experimental results prove the proposed algorithm’s persistence to various existing attacks with low cost.


2011 ◽  
Vol 317-319 ◽  
pp. 1537-1540 ◽  
Author(s):  
Tian Gong Pan ◽  
Da Yong Li

Arnold cat map is a classical transformation of image encryption, but it has some shortcomings such as short key quantities, small period and so on. On the basis of Arnold cat map, it presented an algorithm of image encryption based on 3D Arnold cat and chaotic map. Simulation experiments show that the encryption algorithm has characters of strong keys, better effect and fast.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1373
Author(s):  
Jakub Oravec ◽  
Lubos Ovsenik ◽  
Jan Papaj

This paper deals with a plaintext-related image encryption algorithm that modifies the parameter values used by the logistic map according to plain image pixel intensities. The parameter values are altered in a row-wise manner, which enables the usage of the same procedure also during the decryption. Furthermore, the parameter modification technique takes into account knowledge about the logistic map, its fixed points and possible periodic cycles. Since the resulting interval of parameter values achieves high positive values of Lyapunov exponents, the chaotic behavior of the logistic map should be most pronounced. These assumptions are verified by a set of experiments and the obtained numerical values are compared with those reported in relevant papers. It is found that the proposed design that uses a simpler, but well-studied, chaotic map with mitigated issues obtains results comparable with algorithms that use more complex chaotic systems. Moreover, the proposed solution is much faster than other approaches with a similar purpose.


Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 540-555
Author(s):  
Aqeel Mohsin Hamad

IOT information is always subjected to attacks, because component of the IOT system always unsupervised for most of time, also due to simplicity of wireless communication media, so there is high chance for attack, lastly, IOT is constraint device in terms of energy and computation complexity. So, different research and study are proposed to provide cryptographic algorithm. In this paper, a new image encryption is proposed based on anew chaotic map used to generate the binary key. The proposed map is three dimensional map, which is more sensitive to initial condition, each dimension of the 3-D chaotic map is depended on the others dimension, which may increase the randomness of the behavior trajectory for the next values and this gives the algorithm the ability to resist any attacks. At first, 3-D chaotic map is proposed, which is very sensitive for initial condition, the three dimension is depended on each other, which make the system more randomness, then the produced sequences is converted on binary key by using mod operation. The original image is scrambled based on mod operation to exchange the row and interleaving them, the same operations are repeated for column of the image. Later, the image is divided into blocks of size (8*8) and scrambled by using negative diagonal scan, the final pixels are converted into binary sequences, which are XORed with the generated key to produce the encrypted image. The experiment is performed on different images with different properties and tested with different metrics such as entropy, correlation, key sensitivity, number of pixel change rate (NPCR) and histogram of the original and encrypted images. T results shows that the proposed encryption algorithm is more efficient and outperform other methods.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 355 ◽  
Author(s):  
Guidong Zhang ◽  
Weikang Ding ◽  
Lian Li

We propose a new chaotic map combined with delay and cascade, called tent delay-sine cascade with logistic map (TDSCL). Compared with the original one-dimensional simple map, the proposed map has increased initial value sensitivity and internal randomness and a larger chaotic parameter interval. The chaotic sequence generated by TDSCL has pseudo-randomness and is suitable for image encryption. Based on this chaotic map, we propose an image encryption algorithm with a symmetric structure, which can achieve confusion and diffusion at the same time. Simulation results show that after encryption using the proposed algorithm, the entropy of the cipher is extremely close to the ideal value of eight, and the correlation coefficients between the pixels are lower than 0.01, thus the algorithm can resist statistical attacks. Moreover, the number of pixel change rate (NPCR) and the unified average changing intensity (UACI) of the proposed algorithm are very close to the ideal value, which indicates that it can efficiently resist chosen-plain text attack.


Sign in / Sign up

Export Citation Format

Share Document