scholarly journals Influence of Ectopic Beats on Heart Rate Variability Analysis

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 648
Author(s):  
Lina Zhao ◽  
Peng Li ◽  
Jianqing Li ◽  
Chengyu Liu

The analysis of heart rate variability (HRV) plays a dominant role in the study of physiological signal variability. HRV reflects the information of the adjustment of sympathetic and parasympathetic nerves on the cardiovascular system and, thus, is widely used to evaluate the functional status of the cardiovascular system. Ectopic beats may affect the analysis of HRV. However, the quantitative relationship between the burden of ectopic beats and HRV indices, including entropy measures, has not yet been investigated in depth. In this work, we analyzed the effects of different numbers of ectopic beats on several widely accepted HRV parameters in time-domain (SDNN), frequency-domain (LF/HF), as well as non-linear features (SampEn and Pt-SampEn (physical threshold-based SampEn)). The results showed that all four indices were influenced by ectopic beats, and the degree of influence was roughly increased with the increase of the number of ectopic beats. Ectopic beats had the greatest impact on the frequency domain index LF/HF, whereas the Pt-SampEn was minimally accepted by ectopic beats. These results also indicated that, compared with the other three indices, Pt-SampEn had better robustness for ectopic beats.

2018 ◽  
Author(s):  
Michael Lang

BACKGROUND Heart rate variability (HRV) is derived from the series of R-R intervals extracted from an electrocardiographic (ECG) measurement. Ideally all components of the R-R series are the result of sinoatrial node depolarization. However, the actual R-R series are contaminated by outliers due to heart rhythm disturbances such as ectopic beats, which ought to be detected and corrected appropriately before HRV analysis. OBJECTIVE We have introduced a novel, lightweight, and near real-time method to detect and correct anomalies in the R-R series based on the singular spectrum analysis (SSA). This study aimed to assess the performance of the proposed method in terms of (1) detection performance (sensitivity, specificity, and accuracy); (2) root mean square error (RMSE) between the actual N-N series and the approximated outlier-cleaned R-R series; and (3) how it benchmarks against a competitor in terms of the relative RMSE. METHODS A lightweight SSA-based change-point detection procedure, improved through the use of a cumulative sum control chart with adaptive thresholds to reduce detection delays, monitored the series of R-R intervals in real time. Upon detection of an anomaly, the corrupted segment was substituted with the respective outlier-cleaned approximation obtained using recurrent SSA forecasting. Next, N-N intervals from a 5-minute ECG segment were extracted from each of the 18 records in the MIT-BIH Normal Sinus Rhythm Database. Then, for each such series, a number (randomly drawn integer between 1 and 6) of simulated ectopic beats were inserted at random positions within the series and results were averaged over 1000 Monte Carlo runs. Accordingly, 18,000 R-R records corresponding to 5-minute ECG segments were used to assess the detection performance whereas another 180,000 (10,000 for each record) were used to assess the error introduced in the correction step. Overall 198,000 R-R series were used in this study. RESULTS The proposed SSA-based algorithm reliably detected outliers in the R-R series and achieved an overall sensitivity of 96.6%, specificity of 98.4% and accuracy of 98.4%. Furthermore, it compared favorably in terms of discrepancies of the cleaned R-R series compared with the actual N-N series, outperforming an established correction method on average by almost 30%. CONCLUSIONS The proposed algorithm, which leverages the power and versatility of the SSA to both automatically detect and correct artifacts in the R-R series, provides an effective and efficient complementary method and a potential alternative to the current manual-editing gold standard. Other important characteristics of the proposed method include the ability to operate in near real-time, the almost entirely model-free nature of the framework which does not require historical training data, and its overall low computational complexity.


2020 ◽  
Vol 15 (6) ◽  
pp. 896-899
Author(s):  
Reabias de A. Pereira ◽  
José Luiz de B. Alves ◽  
João Henrique da C. Silva ◽  
Matheus da S. Costa ◽  
Alexandre S. Silva

Objective: To evaluate the accuracy of the smartphone application (app) HRV Expert (CardioMood) and a chest strap (H10 Polar) for recording R-R intervals compared with electrocardiogram (ECG). Methods: A total of 31 male recreational runners (age 36.1 [6.3] y) volunteered for this study. R-R intervals were recorded simultaneously by the smartphone app and ECG for 5 minutes to analyze heart-rate variability in both the supine and sitting positions. Time-domain indexes (heart rate, mean R-R, SD of RR intervals, count of successive normal R-R intervals differing by more than 50 ms, percentage of successive normal R-R intervals differing by more than 50 ms, and root mean square of successive differences between normal R-R intervals), frequency-domain indexes (low frequency, normalized low frequency, high frequency, normalized high frequency, low-frequency to high-frequency ratio, and very low frequency), and nonlinear indexes (SD of instantaneous beat-to-beat variability and long-term SD of continuous R-R intervals) were compared by unpaired t test, Pearson correlation, simple linear regression, and Bland–Altman plot to evaluate the agreement between the devices. Results: High similarity with P value varying between .97 and 1.0 in both positions was found. The correlation coefficient of the heart-rate-variability indexes was perfect (r = 1.0; P = .00) for all variables. The constant error, standard error of estimation, and limits of agreement between ECG and the smartphone app were considered small. Conclusion: The smartphone app and chest strap provide excellent ECG compliance for all variables in the time domain, frequency domain, and nonlinear indexes, regardless of the assessed position. Therefore, the smartphone app replaces ECG for any heart-rate-variability analysis in runners.


Sign in / Sign up

Export Citation Format

Share Document