scholarly journals Neural Network Used for the Fusion of Predictions Obtained by the K-Nearest Neighbors Algorithm Based on Independent Data Sources

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1568
Author(s):  
Małgorzata Przybyła-Kasperek ◽  
Kwabena Frimpong Marfo

The article concerns the problem of classification based on independent data sets—local decision tables. The aim of the paper is to propose a classification model for dispersed data using a modified k-nearest neighbors algorithm and a neural network. A neural network, more specifically a multilayer perceptron, is used to combine the prediction results obtained based on local tables. Prediction results are stored in the measurement level and generated using a modified k-nearest neighbors algorithm. The task of neural networks is to combine these results and provide a common prediction. In the article various structures of neural networks (different number of neurons in the hidden layer) are studied and the results are compared with the results generated by other fusion methods, such as the majority voting, the Borda count method, the sum rule, the method that is based on decision templates and the method that is based on theory of evidence. Based on the obtained results, it was found that the neural network always generates unambiguous decisions, which is a great advantage as most of the other fusion methods generate ties. Moreover, if only unambiguous results were considered, the use of a neural network gives much better results than other fusion methods. If we allow ambiguity, some fusion methods are slightly better, but it is the result of this fact that it is possible to generate few decisions for the test object.

Author(s):  
Victoria Wu

Introduction: Scoliosis, an excessive curvature of the spine, affects approximately 1 in 1,000 individuals. As a result, there have formerly been implementations of mandatory scoliosis screening procedures. Screening programs are no longer widely used as the harms often outweigh the benefits; it causes many adolescents to undergo frequent diagnosis X-ray procedure This makes spinal ultrasounds an ideal substitute for scoliosis screening in patients, as it does not expose them to those levels of radiation. Spinal curvatures can be accurately computed from the location of spinal transverse processes, by measuring the vertebral angle from a reference line [1]. However, ultrasound images are less clear than x-ray images, making it difficult to identify the spinal processes. To overcome this, we employ deep learning using a convolutional neural network, which is a powerful tool for computer vision and image classification [2]. Method: A total of 2,752 ultrasound images were recorded from a spine phantom to train a convolutional neural network. Subsequently, we took another recording of 747 images to be used for testing. All the ultrasound images from the scans were then segmented manually, using the 3D Slicer (www.slicer.org) software. Next, the dataset was fed through a convolutional neural network. The network used was a modified version of GoogLeNet (Inception v1), with 2 linearly stacked inception models. This network was chosen because it provided a balance between accurate performance, and time efficient computations. Results: Deep learning classification using the Inception model achieved an accuracy of 84% for the phantom scan.  Conclusion: The classification model performs with considerable accuracy. Better accuracy needs to be achieved, possibly with more available data and improvements in the classification model.  Acknowledgements: G. Fichtinger is supported as a Canada Research Chair in Computer-Integrated Surgery. This work was funded, in part, by NIH/NIBIB and NIH/NIGMS (via grant 1R01EB021396-01A1 - Slicer+PLUS: Point-of-Care Ultrasound) and by CANARIE’s Research Software Program.    Figure 1: Ultrasound scan containing a transverse process (left), and ultrasound scan containing no transverse process (right).                                Figure 2: Accuracy of classification for training (red) and validation (blue). References:           Ungi T, King F, Kempston M, Keri Z, Lasso A, Mousavi P, Rudan J, Borschneck DP, Fichtinger G. Spinal Curvature Measurement by Tracked Ultrasound Snapshots. Ultrasound in Medicine and Biology, 40(2):447-54, Feb 2014.           Krizhevsky A, Sutskeyer I, Hinton GE. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25:1097-1105. 


2021 ◽  
Author(s):  
Rhea Mantri ◽  
Kulkarni Rakshit Raghavendra ◽  
Harshita Puri ◽  
Jhanavi Chaudhary ◽  
Kishore Bingi

2020 ◽  
pp. 487-501
Author(s):  
Steven Walczak ◽  
Senanu R. Okuboyejo

This study investigates the use of artificial neural networks (ANNs) to classify reasons for medication nonadherence. A survey method is used to collect individual reasons for nonadherence to treatment plans. Seven reasons for nonadherence are identified from the survey. ANNs using backpropagation learning are trained and validated to produce a nonadherence classification model. Most patients identified multiple reasons for nonadherence. The ANN models were able to accurately predict almost 63 percent of the reasons identified for each patient. After removal of two highly common nonadherence reasons, new ANN models are able to identify 73 percent of the remaining nonadherence reasons. ANN models of nonadherence are validated as a reliable medical informatics tool for assisting healthcare providers in identifying the most likely reasons for treatment nonadherence. Physicians may use the identified nonadherence reasons to help overcome the causes of nonadherence for each patient.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050326
Author(s):  
Ning Cao ◽  
Jianjun Wang

The realization of exploratory innovation is a complex and nonlinear evolutionary problem. Existing works point out that it is closely related with knowledge governance and boundary-spanning search. However, the intricate relationship among them still lacks exact quantitative explanations. Motivated by this, using four machine learning methods, namely, linear regression (LR), neural network (NN), support vector machine (SVM) and k-nearest neighbors (KNN), we explore how boundary-spanning search combined with knowledge governance influences innovation. Results show that SVM has the highest values of both stability and goodness of fitting. The SVM results show that the combination of low knowledge governance and high boundary-spanning search boosts innovation most efficiently, while high knowledge governance combined with low boundary-spanning search caused the most detrimental effect on innovation. Our results reveal enhancing boundary-spanning search is essential and beneficial to innovation.


2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


2021 ◽  
Author(s):  
Julie Chi Chow ◽  
Tsair-Wei Chien ◽  
Lin-Yen Wang ◽  
Willy Chou

Abstract Background: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN) and artificial neural networks(ANN) can improve prediction accuracy on account of its usage of a large number of parameters for modeling. A hypothesis using a combined scheme of algorithms, including convolutional neural networks(CNN), artificial neural networks(ANN), K-nearest Neighbors Algorithm(KNN), and logis-tical regression(LR), was made to improve the prediction DF accuracy for children. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF). A 11-variables were eligible by observing the statistical significance in predicting DF risk. The prediction accuracy was based on two training (80%) and testing (20%) sets on model accuracy of the area under the receiver operating characteristic curve (AUC) greater than 0.80 and 0.70, respectively, for discriminating DF+ and DF− in the two sets. Two scenarios of the combined scheme and individual algorithms were compared using the training set to predict the testing set. Results: We observed that (i) k-nearest neighbors algorithm has poorer AUC(<0.50), (ii)LR has relatively higher AUC(=0.70), and (ii) the three alternatives have almost equal AUC(=0.68), but smaller than the individual algorithms of NaiveBayes, Logistic regression in raw data and NaiveBayes in normalized data. Conclusion: An LR-based APP was designed to detect DF in children. The 11-item model is suggested to develop the APP for helping patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.


2021 ◽  
Vol 8 (2) ◽  
pp. 311
Author(s):  
Mohammad Farid Naufal

<p class="Abstrak">Cuaca merupakan faktor penting yang dipertimbangkan untuk berbagai pengambilan keputusan. Klasifikasi cuaca manual oleh manusia membutuhkan waktu yang lama dan inkonsistensi. <em>Computer vision</em> adalah cabang ilmu yang digunakan komputer untuk mengenali atau melakukan klasifikasi citra. Hal ini dapat membantu pengembangan <em>self autonomous machine</em> agar tidak bergantung pada koneksi internet dan dapat melakukan kalkulasi sendiri secara <em>real time</em>. Terdapat beberapa algoritma klasifikasi citra populer yaitu K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan Convolutional Neural Network (CNN). KNN dan SVM merupakan algoritma klasifikasi dari <em>Machine Learning</em> sedangkan CNN merupakan algoritma klasifikasi dari Deep Neural Network. Penelitian ini bertujuan untuk membandingkan performa dari tiga algoritma tersebut sehingga diketahui berapa gap performa diantara ketiganya. Arsitektur uji coba yang dilakukan adalah menggunakan 5 cross validation. Beberapa parameter digunakan untuk mengkonfigurasikan algoritma KNN, SVM, dan CNN. Dari hasil uji coba yang dilakukan CNN memiliki performa terbaik dengan akurasi 0.942, precision 0.943, recall 0.942, dan F1 Score 0.942.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Weather is an important factor that is considered for various decision making. Manual weather classification by humans is time consuming and inconsistent. Computer vision is a branch of science that computers use to recognize or classify images. This can help develop self-autonomous machines so that they are not dependent on an internet connection and can perform their own calculations in real time. There are several popular image classification algorithms, namely K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). KNN and SVM are Machine Learning classification algorithms, while CNN is a Deep Neural Networks classification algorithm. This study aims to compare the performance of that three algorithms so that the performance gap between the three is known. The test architecture is using 5 cross validation. Several parameters are used to configure the KNN, SVM, and CNN algorithms. From the test results conducted by CNN, it has the best performance with 0.942 accuracy, 0.943 precision, 0.942 recall, and F1 Score 0.942.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>


Sign in / Sign up

Export Citation Format

Share Document