scholarly journals A Wideband Metal-Only Patch Antenna for CubeSat

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Suhila Abulgasem ◽  
Faisel Tubbal ◽  
Raad Raad ◽  
Panagiotis Ioannis Theoharis ◽  
Sining Liu ◽  
...  

This article presents a compact wideband high gain patch antenna for CubeSat. The proposed metal-only antenna mainly consists of an upper patch, a folded ramp-shaped patch and shoring pins connecting the antenna with the ground plane. By adjusting the lengths and widths of two arms of the upper F-shaped patch, a second resonant frequency is generated, and hence, the −10 dB bandwidth is increased. Moreover, the effect of arms’ lengths and widths on reflection coefficients, operating frequency and bandwidth is presented. To validate the design and the simulation results, a prototype metal-only patch antenna was fabricated and tested in a Chamber. A good agreement between the simulated and measured results is achieved. The measured results show that the fabricated prototype achieves a −10 dB bandwidth of 44.9% (1.6–2.7 GHz), a small reflection coefficient of −24.4 dB and a high efficiency, i.e., 85% at 2.45 GHz. The radiation performance of the proposed antenna is measured, showing a peak realized gain of 8.5 dBi with cross polarization level less than −20 dB at 2.45 GHz and a 3 dB gain bandwidth of 61.22%.

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1189 ◽  
Author(s):  
Anurag Singh ◽  
Sandip Vijay ◽  
Rudra Narayan Baral

In this paper, a low cross-polarization improved-gain rectangular patch antenna is presented. A patch-ground shorting pin with defected patch structure (DPS) is introduced to suppress the cross-polarization level. A High Reflective Frequency Selective Surface (HRFSS) superstrate is designed and placed over the proposed antenna at an optimized position to intensify the gain. To characterize the unit-cell of the superstrate, its transmission characteristics are extracted and discussed. Integration of the superstrate achieves a beam contraction resulting in a gain enhancement to 10.65 dBi. The proposed antenna has perfect broadside radiation with a cross-polarization level of below −30 dB in the entire half power beamwidth. The prototype of the antenna exhibits good agreement between experimental and simulated results.


Radiations improvement in a probe fed rectangular microstrip patch antenna using linear slot etched ground plane is proposed. Conventional MPA is designed using Glass Epoxy FR4 substrate. Substrate has dielectric constant 4.4 and its thickness 1.6 mm, operated at resonant frequency 3.05 GHz. The proposed method is simple and easy to etch on a substrate. This will suppress cross-polarized (XP) radiation field only without disturbing the dominant mode and co-polarized radiations. The concept has been tested using HFSS tool and verified its results experimentally. The experimental results show a good agreement with the simulation results.


Author(s):  
Huynh Nguyen Bao Phuong

In  this paper,  we  present  a  flexible  design of  electromagnetic  bandgap  (EBG)  structure,  which  is constructed  based  on  Fractal  geometry,  for  antenna applications.  These  Fractals,  which  are  the  Sierpinski triangles,  are  arranged  to  repeat  each 600to  introduce the  hexagonal  unit  cells.  By  changing  the  gap  between two adjacent Sierpinski triangles inside EBG unit cell, it can  be  introducing  two  EBG  structuresseparately  that have  broadband  and  dual  bandgap.  By  using  the suspending  microstrip  method, two arrays 3×4  of  EBG unit  cells  areutilized  to  investigate  the  bandgap  of  the EBG  structures.  The  EBG  operation  bandwidth  of  the broadband  structure  and  the  dual-band  structure  are about  87%  and  40%;  35%  at  the  center  bandgap frequencies,  respectively.  Moreover,  a  comparison between  the  broadband  EBG  and  the  conventional mushroom-like  EBG  has  been  done.  Experimental results  of  the  proposed  design  show  good  agreement  in comparison  with  simulation  results.  Finally,  the proposed  EBG  structures  are  studied  as  a  high impedance  ground  plane  for  enhancing  the  radiation properties of a patch antenna.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2448 ◽  
Author(s):  
Hongyu Shi ◽  
Luyi Wang ◽  
Mengran Zhao ◽  
Juan Chen ◽  
Anxue Zhang ◽  
...  

In this paper, metasurfaces with both cross-polarization conversion and vortex beam-generating are proposed. The proposed finite metasurface designs are able to change the polarization of incident electromagnetic (EM) waves to its cross-polarization. In addition, they also can modulate the incidences into beams carrying orbital angular momentum (OAM) with different orders ( l = + 1 , l = + 2 , l = − 1 and l = − 2 ) by applying corresponding transmission phase distribution schemes on the metasurface aperture. The generated vortex beams are at 5.14 GHz. The transmission loss is lower than 0.5 dB while the co-polarization level is −10 dB compared to the cross-polarization level. The measurement results confirmed the simulation results and verified the properties of the proposed designs.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 49918-49927 ◽  
Author(s):  
Xiao Zhang ◽  
Qiong-Sen Wu ◽  
Lei Zhu ◽  
Guan-Long Huang ◽  
Tao Yuan

Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Chang Chen ◽  
Bo-Liang Liu ◽  
Ling Ji ◽  
Wei-Dong Chen

A dual-polarization substrate-integrated Fabry-Pérot cavity (SI-FPC) antenna is presented in this paper. The patch embedded in SI-FPC is excited with a near-field coupled feeding structure for V-polarization and with a slot-coupled feeding structure for H-polarization. The feeding structures are separated by a ground plane to improve the isolation between the ports. As a design example, an antenna operating at 10.0 GHz is fabricated and measured. A high degree of port isolation (<−40 dB) over the whole operating bandwidth (9.5–10.2 GHz) and good cross-polarization level (>25 dB) can be achieved.


Author(s):  
B. Mu¨hlbauer ◽  
R. Ewert ◽  
O. Kornow ◽  
B. Noll ◽  
M. Aigner

A new numerical approach called RPM-CN approach is applied to predict broadband combustion noise. This highly efficient hybrid CFD/CAA approach can rely on a reactive RANS simulation. The RPM method is used to reconstruct stochastic broadband combustion noise sources in the time domain based on statistical turbulence quantities. Subsequently, the propagation of the combustion noise is computed by solving the acoustic perturbation equations (APE-4). The accuracy of the RPM-CN approach will be demonstrated by a good agreement of the simulation results with acoustic measurements of the DLR-A flame. The high efficiency and therefore low computational costs enable the usage of this numerical approach in the design process.


2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document