scholarly journals Fault-Tolerant FPGA-Based Nanosatellite Balancing High-Performance and Safety for Cryptography Application

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2148
Author(s):  
Laurent Gantel ◽  
Quentin Berthet ◽  
Emna Amri ◽  
Alexandre Karlov ◽  
Andres Upegui

With the growth of the nano-satellites market, the usage of commercial off-the-shelf FPGAs for payload applications is also increasing. Due to the fact that these commercial devices are not radiation-tolerant, it is necessary to enhance them with fault mitigation mechanisms against Single Event Upsets (SEU). Several mechanisms such as memory scrubbing, triple modular redundancy (TMR) and Dynamic and Partial Reconfiguration (DPR), can help to detect, isolate and recover from SEU faults. In this paper, we introduce a dynamically reconfigurable platform equipped with configuration memory scrubbing and TMR mechanisms. We study their impacts when combined with DPR, providing three different execution modes: low-power, safe and high-performance mode. The fault detection mechanism permits the system to measure the radiation level and to estimate the risk of future faults. This enables the possibility of dynamically selecting the appropriate execution mode in order to adopt the best trade-off between performance and reliability. The relevance of the platform is demonstrated in a nano-satellite cryptographic application running on a Zynq UltraScale+ MPSoC device. A fault injection campaign has been performed to evaluate the impact of faulty configuration bits and to assess the efficiency of the proposed mitigation and the overall system reliability.

Author(s):  
Qiang Guan ◽  
Nathan DeBardeleben ◽  
Sean Blanchard ◽  
Song Fu ◽  
Claude H. Davis IV ◽  
...  

As the high performance computing (HPC) community continues to push towards exascale computing, HPC applications of today are only affected by soft errors to a small degree but we expect that this will become a more serious issue as HPC systems grow. We propose F-SEFI, a Fine-grained Soft Error Fault Injector, as a tool for profiling software robustness against soft errors. We utilize soft error injection to mimic the impact of errors on logic circuit behavior. Leveraging the open source virtual machine hypervisor QEMU, F-SEFI enables users to modify emulated machine instructions to introduce soft errors. F-SEFI can control what application, which sub-function, when and how to inject soft errors with different granularities, without interference to other applications that share the same environment. We demonstrate use cases of F-SEFI on several benchmark applications with different characteristics to show how data corruption can propagate to incorrect results. The findings from the fault injection campaign can be used for designing robust software and power-efficient hardware.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3160
Author(s):  
Sarah Azimi ◽  
Corrado De Sio ◽  
Daniele Rizzieri ◽  
Luca Sterpone

The continuous scaling of electronic components has led to the development of high-performance microprocessors which are even suitable for safety-critical applications where radiation-induced errors, such as single event effects (SEEs), are one of the most important reliability issues. This work focuses on the development of a fault injection environment capable of analyzing the impact of errors on the functionality of an ARM Cortex-A9 microprocessor embedded within a Zynq-7000 AP-SoC, considering different fault models affecting both the system memory and register resources of the embedded processor. We developed a novel Python-based fault injection platform for the emulation of radiation-induced faults within the AP-SoC hardware resources during the execution of software applications. The fault injection approach is not intrusive, and it does not require modifying the software application under evaluation. The experimental analyses have been performed on a subset of the MiBench benchmark software suite. Fault injection results demonstrate the capability of the developed method and the possibility of evaluating various sets of fault models.


2021 ◽  
Vol 14 (4) ◽  
pp. 1-32
Author(s):  
Sebastian Sabogal ◽  
Alan George ◽  
Gary Crum

Deep learning (DL) presents new opportunities for enabling spacecraft autonomy, onboard analysis, and intelligent applications for space missions. However, DL applications are computationally intensive and often infeasible to deploy on radiation-hardened (rad-hard) processors, which traditionally harness a fraction of the computational capability of their commercial-off-the-shelf counterparts. Commercial FPGAs and system-on-chips present numerous architectural advantages and provide the computation capabilities to enable onboard DL applications; however, these devices are highly susceptible to radiation-induced single-event effects (SEEs) that can degrade the dependability of DL applications. In this article, we propose Reconfigurable ConvNet (RECON), a reconfigurable acceleration framework for dependable, high-performance semantic segmentation for space applications. In RECON, we propose both selective and adaptive approaches to enable efficient SEE mitigation. In our selective approach, control-flow parts are selectively protected by triple-modular redundancy to minimize SEE-induced hangs, and in our adaptive approach, partial reconfiguration is used to adapt the mitigation of dataflow parts in response to a dynamic radiation environment. Combined, both approaches enable RECON to maximize system performability subject to mission availability constraints. We perform fault injection and neutron irradiation to observe the susceptibility of RECON and use dependability modeling to evaluate RECON in various orbital case studies to demonstrate a 1.5–3.0× performability improvement in both performance and energy efficiency compared to static approaches.


2016 ◽  
Vol 16 (2) ◽  
pp. 35-45
Author(s):  
Mariya Hristova

Abstract The present article models and examines k˅n systems, in particular Triple modular redundancy (2˅3) and 3˅5. The aim of the study is to derive mathematical models, which are used for determining the impact of structural redundancy (the number of channels n and the threshold of the quorum function k) on the reliability of the system. The probability of failure-free operation p and the Mean Time Between Failures (MTBF) are used as reliability indicators.


Author(s):  
Faisal Shahzad ◽  
Moritz Kreutzer ◽  
Thomas Zeiser ◽  
Rui Machado ◽  
Andreas Pieper ◽  
...  

Today’s high performance computing systems are made possible by multiple increases in hardware parallelity. This results in the decrease of mean time to failures of the systems with each newer generation, which is an alarming trend. Therefore, it is not surprising that a lot of research is going on in the area of fault tolerance and fault mitigation. Applications should survive a failure and/or be able to recover with minimal cost. We have used Global Address Space Programming Interface (GASPI), which is a relatively new communication library based on the PGAS model. It fulfills the basic requirement of a fault tolerant communication library, i.e. the failure of a process does not cause the remaining processes to fail. This work is focused on extending the fault tolerance features of GASPI in the form of a supporting health-check library that applications can benefit from. These features include failure detection, its information propagation, recovery management, communication recovery, etc. To reinforce its utility, we have also developed a fault tolerant neighbor node-level checkpoint/restart library. Instead of introducing algorithm-based fault tolerance in its true sense, we demonstrate how (using these supplementary fault tolerance functions) one can build applications to allow integrate a low cost fault detection/recovery mechanism and, if necessary, recover the application on the fly. We showcase the usage of these tools by implementing them in three different applications. Two of the applications fall in the category of linear sparse solvers, whereas the third application is based on a fluid flow solver. We also analyze the overheads involved in failure-free cases as well as various failure cases. Our fault detection mechanism causes no overhead in failure-free cases, whereas in case of failure(s), the failure detection and recovery cost is of reasonably acceptable order and shows good scalability.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


2020 ◽  
Vol 10 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Lamia Taouzinet ◽  
Sofiane Fatmi ◽  
Allaeddine Khellouf ◽  
Mohamed Skiba ◽  
Mokrane Iguer-ouada

Background: Alpha-tocopherol is a potent antioxidant involved in sperm protection particularly during cryopreservation. However, its poor solubility limits the optimal protection in aqueous solutions. Objective: The aim of this study was to enhance the solubility of α-tocopherol by the use of liposomes. Methods: The experimental approach consisted to load vitamin E in liposomes prepared by ethanol injection method and the optimization carried out by an experimental design. The optimum solution was characterized by high performance liquid chromatography and scanning electron microscope. Finely, the impact on sperm motility protection was studied by the freezing technic of bovine sperm. Results: The optimum solution was obtained when using 10.9 mg/ml of phospholipids, 1.7 mg/ml of cholesterol and 2 mg/ml of vitamin E. The liposome size was 99.86 nm, providing 78.47% of loaded efficiency. The results showed also a significant positive impact on sperm motility after hours of preservation. Conclusion: In conclusion, the current results showed the interest of liposome preparation as an alternative to enhance vitamin E solubility and to protect spermatozoa during cryopreservation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3891
Author(s):  
Piotr Kordel ◽  
Radosław Wolniak

This article’s aim is to explain the impact of technology entrepreneurship phenomenon on waste management enterprise performance in the conditions of COVID-19 pandemic. The concept of technology entrepreneurship according to the configuration approach and the category of high-performance organization are the theoretical bases of empirical investigation. For the implementation of empirical research, Fuzzy set Qualitative Comparative Analysis (FsQCA) was adopted. The research sample included a group of producers of Refused Derived Fuel (RDF) as a central part of the waste to energy industry located in Poland. The research results showed that the waste to energy sector is highly immune to pandemic threats. While during COVID-19, the basic economic parameters (i.e., sales, profitability and employment) of the entire industry in Poland clearly decreased, the same parameters in the case of the waste to energy industry remained at the same level. The research results allow the formulation of two high-performance models of technology entrepreneurship in the waste to energy industry under COVID-19 conditions. The first model is based on traditional technologies and hierarchical organizational structures, and the second is using innovative technologies and flexible structures. Both technology entrepreneurship models are determined by their emergence as complementary to implementation strategies and the opportunity-oriented allocation of resources within business model portfolios.


Sign in / Sign up

Export Citation Format

Share Document