scholarly journals The Operating Strategies of Small-Scale Combined Heat and Power Plants in Liberalized Power Markets

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3110 ◽  
Author(s):  
Pavel Atănăsoae

Distributed generation is a good option for future energy systems with respect to sustainable development. In this context, the small-scale combined heat and power (CHP) plants are seen as an efficient way to reduce greenhouse gas emissions due to lower fuel consumption compared to the separate generation of the heat and electricity. The objective of this paper is to establish operating strategies of the small-scale CHP plants to reduce operational cost and increase revenue in liberalized electricity markets. It analyzes a cogeneration plant with organic Rankine cycle and biomass fuel under the conditions of the Romanian electricity market and the green certificates support scheme for electricity generated in high efficiency cogeneration and from renewable sources. The main finding is that choosing an appropriate mode of operation and using correlated prices of heat and electricity can increase the trading profitability of a CHP plant in liberalized power markets. This can be done by an analysis of the particularities and the specific operating conditions of the CHP plant. The results show that the operating strategies of the CHP plant can yield substantial net revenues from electricity and heat sales. The CHP plant can be economically operated to a useful heat load of more than 40% when operating strategies are applied.

Author(s):  
Yavuz Yılmaz ◽  
Rainer Kurz ◽  
Ayşe Özmen ◽  
Gerhard-Wilhelm Weber

In developed electricity markets, the deregulation boosted competition among companies participating in the electricity market. Therefore, the enhanced reliability and availability of gas turbine systems is an industry obligation. Not only providing the available power with minimum operation and maintenance costs, but also guaranteeing high efficiency are additional requisites and efficiency loss of the power plants leads to a loss of money for the electricity generation companies. Multivariate Adaptive Regression Spline (MARS) is a modern methodology of statistical learning, data mining and estimation theory that is significant in both regression and classification is a form of flexible non-parametric regression analysis capable of modeling complex data. In this study, single shaft, 6MW class industrial gas turbines located at various sites have been monitored. The performance monitoring of a gas turbine consisted of hourly measurements of various input variables over an extended period of time. Using such measurements, predictive models for gas turbine heat rate and the gas turbine axial compressor discharge pressure values have been generated. The measured values have been compared with the values obtained as a result of the MARS models. The MARS-based models are obtained with the combination of gas turbine performance input and target variables and the complementary meteorological data. The results are presented, discussed, and conclusions are drawn for modern energy and cost efficient gas turbine and power plant maintenance management as the outcomes of this study.


2020 ◽  
Vol 10 (19) ◽  
pp. 6639 ◽  
Author(s):  
Pietropaolo Morrone ◽  
Angelo Algieri

In recent years, an increasing interest in geothermal energy has been registered in both the scientific community and industry. The present work aims to analyse the energy performance and the economic viability of an innovative high-efficiency geothermal-driven integrated system for a combined heat and power (CHP) application. The system consists of a heat exchanger (HEX) and a transcritical organic Rankine cycle (ORC) that work in parallel to exploit a high-temperature geothermal source (230 °C) and satisfy the energy demand of a commercial centre located in Southern Italy. The ORC and HEX sub-units can operate at partial load to increase the system flexibility and to properly react to continuous changes in energy request. A lumped model was developed to find the proper operating conditions and to evaluate the energy production on an hourly basis over the whole year. In particular, a multi-variable optimisation was implemented to find the most suitable configuration and a 101.4 kWel ORC was selected while the HEX nominal power was 249.5 kWth. The economic viability of the integrated system was evaluated in terms of net present value and payback period and different operating strategies were compared: thermal-driven, electric-driven, and a mixed strategy. The latter turned out to be the best solution according to both energy and economic criteria, with electric and thermal self-consumptions larger than 90%, with no heat dumping and a payback time close to five years.


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4665
Author(s):  
Duarte Kazacos Winter ◽  
Rahul Khatri ◽  
Michael Schmidt

The increasing number of prosumers and the accompanying greater use of decentralised energy resources (DERs) bring new opportunities and challenges for the traditional electricity systems and the electricity markets. Microgrids, virtual power plants (VPPs), peer-to-peer (P2P) trading and federated power plants (FPPs) propose different schemes for prosumer coordination and have the potential of becoming the new paradigm of electricity market and power system operation. This paper proposes a P2P trading scheme for energy communities that negotiates power flows between participating prosumers with insufficient renewable power supply and prosumers with surplus supply in such a way that the community welfare is maximized while avoiding critical grid conditions. For this purpose, the proposed scheme is based on an Optimal Power Flow (OPF) problem with a Multi-Bilateral Economic Dispatch (MBED) formulation as an objective function. The solution is realized in a fully decentralized manner on the basis of the Relaxed Consensus + Innovations (RCI) algorithm. Network security is ensured by a tariff-based system organized by a network agent that makes use of product differentiation capabilities of the RCI algorithm. It is found that the proposed mechanism accurately finds and prevents hazardous network operations, such as over-voltage in grid buses, while successfully providing economic value to prosumers’ renewable generation within the scope of a P2P, free market.


Author(s):  
Abdelbasset Krama ◽  
Mohamed Gharib ◽  
Shady S. Refaat ◽  
Alan Palazzolo

Abstract This paper presents a novel controller for drill string systems based on a super-twisting sliding mode theory. The aim is to eliminate the stick-slip vibration and maintain a constant drill string velocity at the desired reference value. The proposed controller inherently attenuates the torsional vibration while ensuring the stability and high efficiency of the drill string. A discontinuous lumped-parameter torsional model of vertical drill strings based on four components (rotary table, drill pipes, drill collars and drill bit) is considered. The Karnopp friction model is adopted to simulate the nonlinear bit-rock interaction phenomena. In order to provide a more accurate evaluation, the proposed drill string controller is implemented with the induction motor, a variable frequency drive and a gearbox to closely mirror the real environment of oil well drill strings. The increasing demand for prototyping and testing high-power plants in realistic and safe environments has led to the advancement of new types of experimental investigations without hurting the real system or building a small-scale prototype for testing. The dynamic performance of the proposed controller has been investigated with MATLAB software as well as in a novel hardware in-the-loop (HIL) testing platform. A power plant is modeled and implemented in the real-time simulator OPAL-RT 5600, whereas the controllers are implemented in the dSPACE 1103 control board. The results obtained through simulation and HIL testing demonstrate the feasibility and high performance of the proposed controller.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 429 ◽  
Author(s):  
Roberto Tascioni ◽  
Luca Cioccolanti ◽  
Luca Del Zotto ◽  
Emanuele Habib

In this paper four different detailed models of pipelines are proposed and compared to assess the thermal losses in small-scale concentrated solar combined heat and power plants. Indeed, previous numerical analyses carried out by some of the authors have revealed the high impact of pipelines on the performance of these plants because of their thermal inertia. Hence, in this work the proposed models are firstly compared to each other for varying temperature increase and mass flow rate. Such comparison shows that the one-dimensional (1D) longitudinal model is in good agreement with the results of the more detailed two-dimensional (2D) model at any temperature gradient for heat transfer fluid velocities higher than 0.1 m/s whilst the lumped model agrees only at velocities higher than 1 m/s. Then, the 1D longitudinal model is implemented in a quasi-steady-state Simulink model of an innovative microscale concentrated solar combined heat and power plant and its performances evaluated. Compared to the results obtained using the Simscape library model of the tube, the performances of the plant show appreciable discrepancies during the winter season. Indeed, whenever the longitudinal thermal gradient of the fluid inside the pipeline is high (as at part-load conditions in winter season), the lumped model becomes inaccurate with more than 20% of deviation of the thermal losses and 30% of the organic Rankine cycle (ORC) electric energy output with respect to the 1D longitudinal model. Therefore, the analysis proves that an hybrid model able to switch from a 1D longitudinal model to a zero-dimensional (0D) model with delay based on the fluid flow rate is recommended to obtain results accurate enough whilst limiting the computational efforts.


Author(s):  
Mauro Reini

In recent years, a big effort has been made to improve microturbines thermal efficiency, in order to approach 40%. Two main options may be considered: i) a wide usage of advanced materials for hot ends components, like impeller and recuperator; ii) implementing more complicated thermodynamic cycle, like combined cycle. In the frame of the second option, the paper deals with the hypothesis of bottoming a low pressure ratio, recuperated gas cycle, typically realized in actual microturbines, with an Organic Rankine Cycle (ORC). The object is to evaluate the expected nominal performance parameters of the integrated-combined cycle cogeneration system, taking account of different options for working fluid, vapor pressure and component’s performance parameters. Both options of recuperated and not recuperated bottom cycles are discussed, in relation with ORC working fluid nature and possible stack temperature for microturbine exhaust gases. Finally, some preliminary consideration about the arrangement of the combined cycle unit, and the effects of possible future progress of gas cycle microturbines are presented.


Author(s):  
José Carlos Teixeira ◽  
Rui Ferreira ◽  
Eurico A. Seabra ◽  
Manuel Eduardo Ferreira

Environmental concerns and the drive to reduce the dependence on petroleum brought the use of renewable energies to the forefront. Biomass appears as a very interesting alternative for direct conversion into heat. In this context, densified forms of biomass such as pellets are of great relevance because of their easy of use, high efficiency and low emissions. The practical interest in pellet combustion has been driven by the domestic heating sector, which favors the characteristics that are intrinsic of this fuel, despite its relatively higher price. However, the growing costs of fossil fuels have extended the interest of pellet fuels into industrial applications, including co-firing in power stations. A fast growing market includes the retrofitting of existing fuel boilers and furnaces with alternative burners that can be fitted into existing combustion systems. Such an approach has proved very attractive due to the low installation cost and the growing existence of fuels produced in the vicinity of the end user. This involves in most cases a custom built application which requires a high level of flexibility to variable operating conditions. This work reports on the development of a 120 kW pellet burner. A prototype of the burner was built that enables the independent control of the air supply into various regions of the combustion chamber and an accurate supply of fuel. The burner was fitted into a testing furnace of cylindrical shape oriented horizontally. Its diameter is 0.5 m and is constructed in a modular fashion with a total length of 2.2 m. All the facility is fully instrumented and includes: temperature data in various locations inside the chamber, flue gases emissions (CO, CO2, NOx) measurements and flow rates. The objective of the test and development is to optimize the combustion over the thermal load range of the facility. The excess air, fuel supply (primary and secondary) and the shape of the furnace grate enable the optimization of the burner with CO emissions of approximately 50 ppm, well below the acceptable limits.


1979 ◽  
Author(s):  
Z. P. Tilliette ◽  
B. Pierre

A particular arrangement applicable to open or closed recuperative gas cycles, consisting of a heat generator partly by-passing the low pressure side of the recuperator, is proven to enhance the advantages of gas cycles for energy production. In this way, the cogeneration of both power with high efficiency owing to the recuperator and high temperature process heat becomes possible and economically attractive. Furthermore, additional possibilities appear for power generation by combined gas and steam or ammonia cycles. In any case, the overall utilitization coefficient of the primary energy is increased and the combined production of low or medium temperature heat can also be improved. The great operation flexibility of the system for combined energy generation is worth being emphasized: the by-pass arrangement involves no significant change in the operating conditions of the main turbocompressor as the heat output varies. Applications of this arrangement are made to open and closed gas cycle power plants using fossil, nuclear and solar energies. The overall heat conversion efficiency is tentatively estimated in order to appreciate the energy conversion capability of the investigated power plants.


Author(s):  
T. Watanabe ◽  
Y. Izaki ◽  
Y. Mugikura ◽  
M. Yoshikawa ◽  
H. Morita ◽  
...  

A number of cycle simulations, which are applied by Molten Carbonate Fuel Cell (MCFC) power plants combined with gas/steam turbines, prove that it is possible to design very highly efficient power plants. However, the stack performance, the operation technology and the performance estimation technology have not yet been established during the initial development stages. The Central Research Institute of Electric Power Industry (CRIEPI) has performed many cell and stack tests and has evaluated the performance under various operating conditions. The operation, performance analysis and estimation methods have been developed for various pressure ranges. Therefore, the accuracy of the plant power estimation has been improved immensely. CRIEPI has also proposed the application of a Li/Na electrolyte instead of a Li/K to achieve higher voltages and a longer stack life. A 10 kW-class short stack consisting of ten 1-m2 cells with a Li/Na electrolyte was operated for more than 10,000 hours, and a very low voltage decay rate was measured during the governmental program. Based on these accomplishments, field tests on small MCFC/GT (gas turbine) hybrid power plants with capacities of several hundred kW will be initiated in Japan throughout the next years.


Sign in / Sign up

Export Citation Format

Share Document