scholarly journals Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting

Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 149 ◽  
Author(s):  
Salah Bouktif ◽  
Ali Fiaz ◽  
Ali Ouni ◽  
Mohamed Adel Serhani

Time series analysis using long short term memory (LSTM) deep learning is a very attractive strategy to achieve accurate electric load forecasting. Although it outperforms most machine learning approaches, the LSTM forecasting model still reveals a lack of validity because it neglects several characteristics of the electric load exhibited by time series. In this work, we propose a load-forecasting model based on enhanced-LSTM that explicitly considers the periodicity characteristic of the electric load by using multiple sequences of inputs time lags. An autoregressive model is developed together with an autocorrelation function (ACF) to regress consumption and identify the most relevant time lags to feed the multi-sequence LSTM. Two variations of deep neural networks, LSTM and gated recurrent unit (GRU) are developed for both single and multi-sequence time-lagged features. These models are compared to each other and to a spectrum of data mining benchmark techniques including artificial neural networks (ANN), boosting, and bagging ensemble trees. France Metropolitan’s electricity consumption data is used to train and validate our models. The obtained results show that GRU- and LSTM-based deep learning model with multi-sequence time lags achieve higher performance than other alternatives including the single-sequence LSTM. It is demonstrated that the new models can capture critical characteristics of complex time series (i.e., periodicity) by encompassing past information from multiple timescale sequences. These models subsequently achieve predictions that are more accurate.

2020 ◽  
Vol 67 (8) ◽  
pp. 6473-6482
Author(s):  
Ammar O. Hoori ◽  
Ahmad Al Kazzaz ◽  
Rameez Khimani ◽  
Yuichi Motai ◽  
Alex J. Aved

Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


2020 ◽  
Vol 269 ◽  
pp. 114915 ◽  
Author(s):  
Ghulam Hafeez ◽  
Khurram Saleem Alimgeer ◽  
Imran Khan

Sign in / Sign up

Export Citation Format

Share Document