scholarly journals The Optimal Energy Dispatch of Cogeneration Systems in a Liberty Market

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2868 ◽  
Author(s):  
Whei-Min Lin ◽  
Chung-Yuen Yang ◽  
Chia-Sheng Tu ◽  
Hsi-Shan Huang ◽  
Ming-Tang Tsai

This paper proposes a novel approach toward solving the optimal energy dispatch of cogeneration systems under a liberty market in consideration of power transfer, cost of exhausted carbon, and the operation condition restrictions required to attain maximal profit. This paper investigates the cogeneration systems of industrial users and collects fuel consumption data and data concerning the steam output of boilers. On the basis of the relation between the fuel enthalpy and steam output, the Least Squares Support Vector Machine (LSSVM) is used to derive boiler and turbine Input/Output (I/O) operation models to provide fuel cost functions. The CO2 emission of pollutants generated by various types of units is also calculated. The objective function is formulated as a maximal profit model that includes profit from steam sold, profit from electricity sold, fuel costs, costs of exhausting carbon, wheeling costs, and water costs. By considering Time-of-Use (TOU) and carbon trading prices, the profits of a cogeneration system in different scenarios are evaluated. By integrating the Ant Colony Optimization (ACO) and Genetic Algorithm (GA), an Enhanced ACO (EACO) is proposed to come up with the most efficient model. The EACO uses a crossover and mutation mechanism to alleviate the local optimal solution problem, and to seek a system that offers an overall global solution using competition and selection procedures. Results show that these mechanisms provide a good direction for the energy trading operations of a cogeneration system. This approach also provides a better guide for operation dispatch to use in determining the benefits accounting for both cost and the environment in a liberty market.

2018 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Setia Pramana ◽  
Imam Habib Pamungkas

Geo-demographic analysis (GDA) is a useful method to analyze information based on location, utilizing several spatial analysis explicitly. One of the most efficient and commonly used method is Fuzzy Geographically Weighted Clustering (FGWC).  However, it has a limitation in obtaining local optimal solution in the centroid initialization. A novel approach integrating Gravitational Search Algorithm (GSA) with FGWC is proposed to obtain global optimal solution leading to better cluster quality. Several cluster validity indexes are used to compare the proposed methods with the FGWC using other optimization approaches. The study shows that the hybrid method FGWC-GSA provides better cluster quality. Furthermore, the method has been implemented in R package spatialClust.


2019 ◽  
Vol 19 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Bote Lv ◽  
Juan Chen ◽  
Boyan Liu ◽  
Cuiying Dong

<P>Introduction: It is well-known that the biogeography-based optimization (BBO) algorithm lacks searching power in some circumstances. </P><P> Material & Methods: In order to address this issue, an adaptive opposition-based biogeography-based optimization algorithm (AO-BBO) is proposed. Based on the BBO algorithm and opposite learning strategy, this algorithm chooses different opposite learning probabilities for each individual according to the habitat suitability index (HSI), so as to avoid elite individuals from returning to local optimal solution. Meanwhile, the proposed method is tested in 9 benchmark functions respectively. </P><P> Result: The results show that the improved AO-BBO algorithm can improve the population diversity better and enhance the search ability of the global optimal solution. The global exploration capability, convergence rate and convergence accuracy have been significantly improved. Eventually, the algorithm is applied to the parameter optimization of soft-sensing model in plant medicine extraction rate. Conclusion: The simulation results show that the model obtained by this method has higher prediction accuracy and generalization ability.</P>


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.


2020 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Jin Tao ◽  
Kelly Brayton ◽  
Shira Broschat

Advances in genome sequencing technology and computing power have brought about the explosive growth of sequenced genomes in public repositories with a concomitant increase in annotation errors. Many protein sequences are annotated using computational analysis rather than experimental verification, leading to inaccuracies in annotation. Confirmation of existing protein annotations is urgently needed before misannotation becomes even more prevalent due to error propagation. In this work we present a novel approach for automatically confirming the existence of manually curated information with experimental evidence of protein annotation. Our ensemble learning method uses a combination of recurrent convolutional neural network, logistic regression, and support vector machine models. Natural language processing in the form of word embeddings is used with journal publication titles retrieved from the UniProtKB database. Importantly, we use recall as our most significant metric to ensure the maximum number of verifications possible; results are reported to a human curator for confirmation. Our ensemble model achieves 91.25% recall, 71.26% accuracy, 65.19% precision, and an F1 score of 76.05% and outperforms the Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) model with fine-tuning using the same data.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 757
Author(s):  
Yongke Pan ◽  
Kewen Xia ◽  
Li Wang ◽  
Ziping He

The dataset distribution of actual logging is asymmetric, as most logging data are unlabeled. With the traditional classification model, it is hard to predict the oil and gas reservoir accurately. Therefore, a novel approach to the oil layer recognition model using the improved whale swarm algorithm (WOA) and semi-supervised support vector machine (S3VM) is proposed in this paper. At first, in order to overcome the shortcomings of the Whale Optimization Algorithm applied in the parameter-optimization of the S3VM model, such as falling into a local optimization and low convergence precision, an improved WOA was proposed according to the adaptive cloud strategy and the catfish effect. Then, the improved WOA was used to optimize the kernel parameters of S3VM for oil layer recognition. In this paper, the improved WOA is used to test 15 benchmark functions of CEC2005 compared with five other algorithms. The IWOA–S3VM model is used to classify the five kinds of UCI datasets compared with the other two algorithms. Finally, the IWOA–S3VM model is used for oil layer recognition. The result shows that (1) the improved WOA has better convergence speed and optimization ability than the other five algorithms, and (2) the IWOA–S3VM model has better recognition precision when the dataset contains a labeled and unlabeled dataset in oil layer recognition.


Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Hamid Reza Erfanian ◽  
M. H. Noori Skandari ◽  
A. V. Kamyad

We present a new approach for solving nonsmooth optimization problems and a system of nonsmooth equations which is based on generalized derivative. For this purpose, we introduce the first order of generalized Taylor expansion of nonsmooth functions and replace it with smooth functions. In other words, nonsmooth function is approximated by a piecewise linear function based on generalized derivative. In the next step, we solve smooth linear optimization problem whose optimal solution is an approximate solution of main problem. Then, we apply the results for solving system of nonsmooth equations. Finally, for efficiency of our approach some numerical examples have been presented.


2011 ◽  
Vol 225-226 ◽  
pp. 437-441
Author(s):  
Jing Zhang ◽  
You Li

Nowadays, face detection and recognition have gained importance in security and information access. In this paper, an efficient method of face detection based on skin color segmentation and Support Vector Machine(SVM) is proposed. Firstly, segmenting image using color model to filter candidate faces roughly; And then Eye-analogue segments at a given scale are discovered by finding regions which are darker than their neighborhoods to filter candidate faces farther; at the end, SVM classifier is used to detect face feature in the test image, SVM has great performance in classification task. Our tests in this paper are based on MIT face database. The experimental results demonstrate that the proposed method is encouraging with a successful detection rate.


Sign in / Sign up

Export Citation Format

Share Document