scholarly journals Topology Selection and Parametric Design of Electromagnetic Vibration Energy Harvesters by Combining FEA-in-the-Loop and Analytical Approaches

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 627 ◽  
Author(s):  
Seong-yeol Yoo ◽  
Young-Woo Park ◽  
Myounggyu Noh

Electromagnetic energy harvesters have been used to capture low-frequency vibration energy of large machines such as diesel generators. The structure of an electromagnetic energy harvester is either planar or tubular. Past research efforts focus on optimally designing each structure separately. An objective comparison between the two structures is necessary in order to decide which structure is advantageous. When comparing the structures, the design variations such as magnetization patterns and the use of yokes must also be considered. In this study, extensive comparisons are made covering all possible topologies of an electromagnetic energy harvester. A bench mark harvester is defined and the parameters that produce maximum output power are identified for each topology. It is found that the tubular harvesters generally produce larger output power than the planar counterparts. The largest output power is generated by the tubular harvester with a Halbach magnetization pattern (94.7 mW). The second best is the tubular harvester with axial magnetization pattern (79.1 mW) when moving yokes are inserted between permanent magnets for flux concentration. When cost is of primary concern, the tubular harvester with axial pattern may become a best option.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


Author(s):  
S. D. Moss ◽  
L. A. Vandewater ◽  
S. C. Galea

This work reports on the modelling and experimental validation of a bi-axial vibration energy harvesting approach that uses a permanent-magnet/ball-bearing arrangement and a wire-coil transducer. The harvester’s behaviour is modelled using a forced Duffing oscillator, and the primary first order steady state resonant solutions are found using the homotopy analysis method (or HAM). Solutions found are shown to compare well with measured bearing displacements and harvested output power, and are used to predict the wideband frequency response of this type of vibration energy harvester. A prototype harvesting arrangement produced a maximum output power of 12.9 mW from a 12 Hz, 500 milli-g (or 4.9 m/s2) rms excitation.


2012 ◽  
Vol 569 ◽  
pp. 529-532 ◽  
Author(s):  
Zhen Long Xu ◽  
Xiao Xi Wang ◽  
Xiao Biao Shan ◽  
Tao Xie

This paper presents a hybrid energy harvester using piezoelectric (PZT) and electromagnetic (EM) technologies. A mathematical model of the output power for this generator was developed. Experiments were carried out to verify the numerical analysis. The theoretical results were in good agreement with the experimental results. The experimental results showed that the maximum output power of the separate PZT and EM energy harvesters were 0.667 mW and 0.32 mW, while that of the hybrid harvester was 0.845 mW under the vibration acceleration of 9.8 m/s2 at 66 Hz. It shows that the hybrid energy harvester can effectively increase the output power.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7985
Author(s):  
Tra Nguyen Phan ◽  
Jesus Javier Aranda ◽  
Bengt Oelmann ◽  
Sebastian Bader

Investigating the coil–magnet structure plays a significant role in the design process of the electromagnetic energy harvester due to the effect on the harvester’s performance. In this paper, the performance of four different electromagnetic vibration energy harvesters with cylindrical shapes constrained in the same volume were under investigation. The utilized structures are (i) two opposite polarized magnets spaced by a mild steel; (ii) a Halbach array with three magnets and one coil; (iii) a Halbach array with five magnets and one coil; and (iv) a Halbach array with five magnets and three coils. We utilized a completely automatic optimization procedure with the help of an optimization algorithm implemented in Python, supported by simulations in ANSYS Maxwell and MATLAB Simulink to obtain the maximum output power for each configuration. The simulation results show that the Halbach array with three magnets and one coil is the best for configurations with the Halbach array. Additionally, among all configurations, the harvester with two opposing magnets provides the highest output power and volume power density, while the Halbach array with three magnets and one coil provides the highest mass power density. The paper also demonstrates limitations of using the electromagnetic coupling coefficient as a metric for harvester optimization, if the ultimate goal is maximization of output power.


2013 ◽  
Vol 404 ◽  
pp. 635-639 ◽  
Author(s):  
Xue Feng He ◽  
You Zhu ◽  
Yao Qing Cheng ◽  
Jun Gao

Richness of broadband low-frequency vibration energy in environemnts makes it significant to develop broadband low-frequency vibration energy harvesters. A vibration energy harvester composed of two symmetrical cantilevered piezoelectric bimorphs and a rolling mass in a guiding channel was proposed. A prototype of the vibration energy harvester with a rolling mass was assembled and tested. The base excitation caused the rolling mass to impact with two cantilevered bimorphs repeatedly and the impacts cause the bimorphs to vibrate dramatically. Experimental results show that maximum output power and corresponding excitation frequency increased with the amplitude of base acceleration. For the prototype, the maximum output power of a piezoelectric bimorph on a resistor with the resistance of 100 kΩ was 602 μW under base acceleration with the amplitude of 1.5 g and frequency of 37 Hz, and the half power bandwidth was about 13.5% or 5 Hz.


Author(s):  
Yu-ji Gao ◽  
Yong-gang Leng ◽  
Lin-chen Shen ◽  
Yan Guo

A vibration energy harvester is typically composed of a spring–mass system, with the advantage of high energy density, simple structure and easily being miniaturized. Recently, effects of cantilever beam’s structural parameters and cross-section shape on energy-harvesting micro-device is concerned and investigated in this paper, so as to study its performance of energy harvesting to meet the needs of low resonant frequency and maximum output power. The effect of a cantilever beam’s structure dimensions as well as quality of the mass on the device’s resonance frequency and maximum output power can be detected through formula computing. Further study on effect of a cantilever beam’s cross-section shape has also been worked out. According to the simulation experimental results gained from ANSYS with appropriate parameters defined by theoretical derivation, we manage to receive concordant conclusions. To receive a better performance of the energy harvester, we should choose a shorter, wider and thicker cantilever beam with rectangular cross-section and heavier mass at its end. However, to meet the requirement of low resonant frequency for piezoelectric vibration energy harvesting, we still need to define either an upper or a lower limit while choosing parameters of the device.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 872
Author(s):  
Rujun Song ◽  
Chengwei Hou ◽  
Chongqiu Yang ◽  
Xianhai Yang ◽  
Qianjian Guo ◽  
...  

This paper studies a novel enhanced energy-harvesting method to harvest water flow-induced vibration with a tandem arrangement of two piezoelectric energy harvesters (PEHs) in the direction of flowing water, through simulation modeling and experimental validation. A mathematical model is established by two individual-equivalent single-degree-of-freedom models, coupled with the hydrodynamic force obtained by computational fluid dynamics. Through the simulation analysis, the variation rules of vibration frequency, vibration amplitude, power generation and the distribution of flow field are obtained. And experimental tests are performed to verify the numerical calculation. The experimental and simulation results show that the upstream piezoelectric energy harvester (UPEH) is excited by the vortex-induced vibration, and the maximum value of performance is achieved when the UPEH and the vibration are resonant. As the vortex falls off from the UPEH, the downstream piezoelectric energy harvester (DPEH) generates a responsive beat frequency vibration. Energy-harvesting performance of the DPEH is better than that of the UPEH, especially at high speed flows. The maximum output power of the DPEH (371.7 μW) is 2.56 times of that of the UPEH (145.4 μW), at a specific spacing between the UPEN and the DPEH. Thereupon, the total output power of the two tandem piezoelectric energy harvester systems is significantly greater than that of the common single PEH, which provides a good foreground for further exploration of multiple piezoelectric energy harvesters system.


2019 ◽  
Vol 20 (1) ◽  
pp. 90-99
Author(s):  
Aliza Aini Md Ralib ◽  
Nur Wafa Asyiqin Zulfakher ◽  
Rosminazuin Ab Rahim ◽  
Nor Farahidah Za'bah ◽  
Noor Hazrin Hany Mohamad Hanif

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz. ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3845 ◽  
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika ◽  
Artūras Kilikevičius

This paper represents a numerical and experimental investigation of the bidirectional piezoelectric energy harvester. The harvester can harvest energy from the vibrating base in two perpendicular directions. The introduced harvester consists of two cantilevers that are connected by a particular angle and two seismic masses. The first mass is placed at a free end of the harvester while the second mass is fixed at the joining point of the cantilevers. The piezoelectric energy harvester employs the first and the second out of plane bending modes. The numerical investigation was carried out to obtain optimal geometrical parameters and to calculate the mechanical and electrical characteristics of the harvester. The energy harvester can provide stable output power during harmonic and impact-based excitation in two directions. The results of the investigations showed that energy harvester provides a maximum output power of 16.85 µW and 15.9 4 µW when the base has harmonic vibrations in y and z directions, respectively. Maximum output of 4.059 nW/N and 3.1 nW/N in y and z directions were obtained in case of impact based excitation


Sign in / Sign up

Export Citation Format

Share Document