scholarly journals Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3212 ◽  
Author(s):  
Chenqi Tang ◽  
Lingen Chen ◽  
Huijun Feng ◽  
Wenhua Wang ◽  
Yanlin Ge

A modified closed binary Brayton cycle model with variable isothermal pressure drop ratios is established by using finite time thermodynamics in this paper. A topping cycle, a bottoming cycle, two isothermal heating processes and variable-temperature reservoirs are included in the new model. The topping cycle is composed of a compressor, a regular combustion chamber, a converging combustion chamber, a turbine and a precooler. The bottoming cycle is composed of a compressor, an ordinary regenerator, an isothermal regenerator, a turbine and a precooler. The heat conductance distributions among the six heat exchangers are optimized with dimensionless power output as optimization objective. The results show that the double maximum dimensionless power output increases first and then tends to be unchanged while the inlet temperature ratios of the regular combustion chamber and the converging combustion chamber increase. There also exist optimal thermal capacitance rate matchings among the working fluid and heat reservoirs, leading to the optimal maximum dimensionless power output.

Author(s):  
Sushanta K. Mitra ◽  
Achintya Mukhopadhaya

The Brayton Cycle is the ideal cycle for simple gas turbine applications. The heat transfer process in such a cycle is of practical importance as far as power output is considered. The present work focusses on the power output from an ideally reversible Brayton cycle and criteria for optimum power based on its operating parameters like the specific heat of hot and cold fluids, working fluid and heater inlet temperature is discussed here.


Author(s):  
Vishal Anand ◽  
Krishna Nelanti ◽  
Kamlesh G. Gujar

The gas turbine engine works on the principle of the Brayton Cycle. One of the ways to improve the efficiency of the gas turbine is to make changes in the Brayton Cycle. In the present study, Brayton Cycle with intercooling, reheating and regeneration with variable temperature heat reservoirs is considered. Instead of the usual thermodynamic efficiency, the Second law efficiency, defined on the basis of lost work, has been taken as a parameter to study the deviation of the irreversible Brayton Cycle from the ideal cycle. The Second law efficiency of the Brayton Cycle has been found as a function of reheat and intercooling pressure ratios, total pressure ratio, intercooler, regenerator and reheater effectiveness, hot and cold side heat exchanger effectiveness, turbine and compressor efficiency and heating capacities of the heating fluid, the cooling fluid and the working fluid (air). The variation of the Second law efficiency with all these parameters has been presented. From the results, it can be seen that the Second law efficiency first increases and then decreases with increase in intercooling pressure ratio and increases with increase in reheating pressure ratio. The results show that the Second law efficiency is a very good indicator of the amount of irreversibility of the cycle.


Author(s):  
L Chen ◽  
J Zheng ◽  
F Sun ◽  
C Wu

The power density is taken as an objective for performance analysis of an irreversible closed Brayton cycle coupled to variable-temperature heat reservoirs. The analytical formulas about the relationship between power density and working fluid temperature ratio (pressure ratio) are derived with the heat resistance losses in the hot- and cold-side heat exchangers, the irreversible compression and expansion losses in the compressor and turbine, and the effect of the finite thermal capacity rate of the heat reservoirs. The obtained results are compared with those results obtained by using the maximum power criterion. The influences of some design parameters, including the temperature ratio of the heat reservoirs, the effectivenesses of the heat exchangers between the working fluid and the heat reservoirs, and the efficiencies of the compressor and the turbine, on the maximum power density are provided by numerical examples, and the advantages and disadvantages of maximum power density design are analysed. The power plant design with maximum power density leads to a higher efficiency and smaller size. When the heat transfers between the working fluid and the heat reservoirs are carried out ideally and the thermal capacity rates of the heat reservoirs are infinite, the results of this article become similar to those obtained in the recent literature.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4623 ◽  
Author(s):  
Liya Ren ◽  
Huaixin Wang

Compared with the basic organic and steam Rankine cycles, the organic trans-critical cycle (OTC), steam flash cycle (SFC) and steam dual-pressure cycle (SDC) can be regarded as the improved cycle configurations for the waste heat power recovery since they can achieve better temperature matching between the heat source and working fluid in the heat addition process. This study investigates and compares the thermodynamic performance of the OTC, SFC, and SDC based on the waste heat source from the cement kiln with an initial temperature of 320 °C and mass flow rate of 86.2 kg/s. The effects of the main parameters on the cycle performance are analyzed and the parameter optimization is performed with net power output as the objective function. Results indicate that the maximum net power output of SDC is slightly higher than that of SFC and the OTC using n-pentane provides a 19.74% increase in net power output over the SDC since it can achieve the higher use of waste heat and higher turbine efficiency. However, the turbine inlet temperature of the OTC is limited by the thermal stability of the organic working fluid, hence the SDC outputs more power than that of the OTC when the initial temperature of the exhaust gas exceeds 415 °C.


Author(s):  
P. Lu ◽  
C. Brace ◽  
B. Hu ◽  
C. Copeland

For an internal combustion engine, a large quantity of fuel energy (accounting for approximately 30% of the total combustion energy) is expelled through the exhaust without being converted into useful work. Various technologies including turbo-compounding and the pressurized Brayton bottoming cycle have been developed to recover the exhaust heat and thus reduce the fuel consumption and CO2 emission. However, the application of these approaches in small automotive power plants has been relatively less explored because of the inherent difficulties, such as the detrimental backpressure and higher complexity imposed by the additional devices. Therefore, research has been conducted, in which modifications were made to the traditional arrangement aiming to minimize the weaknesses. The turbocharger of the baseline series turbo-compounding was eliminated from the system so that the power turbine became the only heat recovery device on the exhaust side of the engine, and operated at a higher expansion ratio. The compressor was separated from the turbine shaft and mechanically connected to the engine via CVT. According to the results, the backpressure of the novel system is significantly reduced comparing with the series turbo-compounding model. The power output at lower engine speed was also promoted. For the pressurized Brayton bottoming cycle, rather than transferring the thermal energy from the exhaust to the working fluid, the exhaust gas was directly utilized as the working medium and was simply cooled by ambient coolant before the compressor. This arrangement, which is known as the inverted Brayton cycle was simpler to implement. Besides, it allowed the exhaust gasses to be expanded below the ambient pressure. Thereby, the primary cycle was less compromised by the bottoming cycle. The potential of recovering energy from the exhaust was increased as well. This paper analysed and optimized the parameters (including CVT ratio, turbine and compressor speed and the inlet pressure to the bottoming cycle) that are sensitive to the performance of the small vehicle engine equipped with inverted Brayton cycle and novel turbo-compounding system respectively. The performance evaluation was given in terms of brake power output and specific fuel consumption. Two working conditions, full and partial load (10 and 2 bar BMEP) were investigated. Evaluation of the transient performance was also carried out. Simulated results of these two designs were compared with each other as well as the performance from the corresponding baseline models. The system models in this paper were built in GT-Power which is a one dimension (1-D) engine simulation code. All the waste heat recovery systems were combined with a 2.0 litre gasoline engine.


Author(s):  
Na Zhang ◽  
Noam Lior

Stored or transported liquid hydrogen for use in power generation needs to be vaporized before combustion. Much energy was invested in the H2 liquefaction process, and recovery of as much of this energy as possible in the re-evaporation process will contribute to both the overall energy budget of the hydrogen use process, and to environmental impact reduction. A new gas turbine cycle is proposed with liquefied hydrogen (LH2) cryogenic exergy utilization. It is a semi-closed recuperative gas turbine cycle with nitrogen as the working fluid. By integration with the liquid H2 evaporation process, the inlet temperature of the compressor is kept very low, and thus the required compression work could be reduced significantly. Internal-fired combustion is adopted which allows a very high turbine inlet temperature, and a higher average heat input temperature is achieved also by internal heat recuperation. As a result, the cycle ha ry attractive thermal performance with the predicted energy efficiency over 79%. The choice of N2 as the working fluid is to allow the use of air as the oxidant in the combustor. The oxygen in the air combines with the fuel H2 to form water, which is easily separated from the N2 by condensation, leaving the N2 as the working fluid. The quantity of this working fluid in the system is maintained constant by continuously evacuating from the system the same amount that is introduced with the air. The cycle is environmentally friendly because no CO2 and other pollutant are emitted. An exergy analysis is conducted to identify the exergy losses in the components and the potential for further system improvement. The biggest exergy destruction is found occurring in the LH2 evaporator due to the relatively higher heat transfer temperature difference. The energy efficiency and exergy efficiency are 79% and 52%, respectively. The system has a back-work ratio only 1/4 of that in a Brayton cycle with ambient as the heat sink, and thus can produce 30.14 MW (53.9%) more work, with the LH2 cryogenic exergy utilization efficiency of 54%.


Author(s):  
Eric Liese ◽  
Stephen E. Zitney

A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical CO2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. This paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.


Author(s):  
Thomas Conboy ◽  
Steven Wright ◽  
James Pasch ◽  
Darryn Fleming ◽  
Gary Rochau ◽  
...  

Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction [1,2,3,4]. Sandia National Labs (Albuquerque, NM, US) and the US Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. [5] (Arvada, CO, US). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation — according to models, as much as 80 kWe per generator depending on loop configuration — and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650°F/615K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20kWe). Operation at higher speeds, flow rates, pressures and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached.


Author(s):  
Lalatendu Pattanayak

In this study an exergy analysis of 88.71 MW 13D2 gas turbine (GT) topping cycle is carried out. Exergy analysis based on second law was applied to the gas cycle and individual components through a modeling approach. The analysis shows that the highest exergy destruction occurs in the combustion chamber (CC). In addition, the effects of the gas turbine load and performance variations with ambient temperature, compression ratio and turbine inlet temperature (TIT) are investigated to analyse the change in system behavior. The analysis shows that the gas turbine is significantly affected by the ambient temperature which leads to a decrease in power output. The results of the load variation of the gas turbine show that a reduction in gas turbine load results in a decrease in the exergy efficiency of the cycle as well as all the components. The compressor has the largest exergy efficiency of 92.84% compared to the other component of the GT and combustion chamber is the highest source of exergy destruction of 109.89 MW at 100 % load condition. With increase in ambient temperature both exergy destruction rate and exergy efficiency decreases.


Author(s):  
L Chen ◽  
X Qin ◽  
F Sun

An irreversible four-temperature-level absorption heat transformer cycle model with variable-temperature heat reservoirs is established, which considers the heat resistances between the heat reservoirs and the working fluid, the internal irreversibility due to internal dissipation of the working fluid, and the heat leakages between the heat reservoirs and the surrounding. The general relations between the heating load and the coefficient of performance are derived, and the general performance characteristic and the optimal performance characteristic are obtained using numerical examples. Moreover, the cycle model and the derived general relations are confirmed by comparing the prediction results of the model and engineering analysis results for real absorption heat transformer, and the cycle performance characteristic are discussed. The results obtained herein can provide some guidance for the optimal design of absorption heat transformer.


Sign in / Sign up

Export Citation Format

Share Document