scholarly journals Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1286
Author(s):  
Krzysztof Górecki ◽  
Przemysław Ptak

This paper concerns the problem of modelling electrical, thermal and optical properties of multi-colour power light-emitting diodes (LEDs) situated on a common PCB (Printed Circuit Board). A new form of electro-thermo-optical model of such power LEDs is proposed in the form of a subcircuit for SPICE (Simulation Program with Integrated Circuits Emphasis). With the use of this model, the currents and voltages of the considered devices, their junction temperature and selected radiometric parameters can be calculated, taking into account self-heating phenomena in each LED and mutual thermal couplings between each pair of the considered devices. The form of the formulated model is described, and a manner of parameter estimation is also proposed. The correctness and usefulness of the proposed model are verified experimentally for six power LEDs emitting light of different colours and mounted on an experimental PCB prepared by the producer of the investigated devices. Verification was performed for the investigated diodes operating alone and together. Good agreement between the results of measurements and computations was obtained. It was also proved that the main thermal and optical parameters of the investigated LEDs depend on a dominant wavelength of the emitted light.

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


2021 ◽  
Vol 11 (6) ◽  
pp. 2808
Author(s):  
Leandro H. de S. Silva ◽  
Agostinho A. F. Júnior ◽  
George O. A. Azevedo ◽  
Sergio C. Oliveira ◽  
Bruno J. T. Fernandes

The technological growth of the last decades has brought many improvements in daily life, but also concerns on how to deal with electronic waste. Electrical and electronic equipment waste is the fastest-growing rate in the industrialized world. One of the elements of electronic equipment is the printed circuit board (PCB) and almost every electronic equipment has a PCB inside it. While waste PCB (WPCB) recycling may result in the recovery of potentially precious materials and the reuse of some components, it is a challenging task because its composition diversity requires a cautious pre-processing stage to achieve optimal recycling outcomes. Our research focused on proposing a method to evaluate the economic feasibility of recycling integrated circuits (ICs) from WPCB. The proposed method can help decide whether to dismantle a separate WPCB before the physical or mechanical recycling process and consists of estimating the IC area from a WPCB, calculating the IC’s weight using surface density, and estimating how much metal can be recovered by recycling those ICs. To estimate the IC area in a WPCB, we used a state-of-the-art object detection deep learning model (YOLO) and the PCB DSLR image dataset to detect the WPCB’s ICs. Regarding IC detection, the best result was obtained with the partitioned analysis of each image through a sliding window, thus creating new images of smaller dimensions, reaching 86.77% mAP. As a final result, we estimate that the Deep PCB Dataset has a total of 1079.18 g of ICs, from which it would be possible to recover at least 909.94 g of metals and silicon elements from all WPCBs’ ICs. Since there is a high variability in the compositions of WPCBs, it is possible to calculate the gross income for each WPCB and use it as a decision criterion for the type of pre-processing.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


2013 ◽  
Vol 795 ◽  
pp. 603-610 ◽  
Author(s):  
Mohamed Mazlan ◽  
A. Rahim ◽  
M.A. Iqbal ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
W. Razak ◽  
...  

Plastic Leaded Chip Carrier (PLCC) package has been emerged a promising option to tackle the thermal management issue of micro-electronic devices. In the present study, three dimensional numerical analysis of heat and fluid flow through PLCC packages oriented in-line and mounted horizontally on a printed circuit board, is carried out using a commercial CFD code, FLUENTTM. The simulation is performed for 12 PLCC under different inlet velocities and chip powers. The contours of average junction temperatures are obtained for each package under different conditions. It is observed that the junction temperature of the packages decreases with increase in inlet velocity and increases with chip power. Moreover, the increase in package density significantly contributed to rise in temperature of chips. Thus the present simulation demonstrates that the chip density (the number of packages mounted on a given area), chip power and the coolant inlet velocity are strongly interconnected; hence their appropriate choice would be crucial.


2006 ◽  
Author(s):  
El-Hang Lee ◽  
S. G. Lee ◽  
B. H. O ◽  
S. G. Park ◽  
H. S. Noh ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Hui Chen ◽  
Di Jiang ◽  
Ke-Song Chen ◽  
Hong-Fei Zhao

A novel and miniature high-pass filter (HPF) based on a hybrid-coupled microstrip/nonuniform coplanar waveguide (CPW) resonator is proposed in this article, in which the designed CPW has exhibited a wideband dual-mode characteristic within the desired high-pass frequency range. The implemented filter consists of the top microstrip coupled patches and the bottom modified nonuniformly short-circuited CPW resonator. Simulated results from the electromagnetic (EM) analysis software and measured results from a vector network analyzer (VNA) show a good agreement. A designed and fabricated prototype filter having a 3 dB cutoff frequency (fc) of 5.78 GHz has shown an ultrawide high-pass behavior, which exhibits the highest passband frequency exceeding 4.0fcunder the minimum insertion loss (IL) 0.75 dB. The printed circuit board (PCB) area of the filter is approximately0.062λg×0.093λg, whereλgis the guided wavelength atfc.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000384-000388
Author(s):  
Brian Curran ◽  
Jacob Reyes ◽  
Christian Tschoban ◽  
Ivan Ndip ◽  
Klaus-Dieter Lang ◽  
...  

Abstract Increasing demand for high bandwidth wireless satellite connections and telecommunications has resulted in interest in steerable antenna arrays in the GHz frequency range. These applications require cost-effective integration technologies for high frequency and high power integrated circuits (ICs) using GaAs, for example. In this paper, an integration platform is proposed, that enables GaAs ICs to be directly placed on a copper core inside cavities of a high frequency laminate for optimal cooling purposes. The platform is used to integrate a K-Band receiver front-end, composed of four GaAs ICs, with linear IF output power for input powers above −40dBm and a temperature of 42°C during operation.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Mohammad Reza Khawary ◽  
Vahid Nayyeri ◽  
Seyed Mohammad Hashemi ◽  
Mohammad Soleimani

This paper presents a novel ultracompact narrow bandpass filter with high selectivity. The proposed filter is composed of cascading two basic cells. Each cell is basically a microstrip line loaded with a quasiplanar resonator and series gaps which can be fabricated using a standard multilayer printed circuit board technology. The structure is analyzed through an equivalent circuit and full-wave simulations. The simulation results are compared with experimental measurements demonstrating a good agreement between them. The measurement indicates that the realized bandpass filter at the center frequency of 1 GHz has a fractional bandwidth of 2.2%. Most importantly, in comparison with other similar recent works, it is shown that the proposed filter has the smallest size.


2018 ◽  
Vol 10 (8) ◽  
pp. 896-903 ◽  
Author(s):  
Amit Ranjan Azad ◽  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan

AbstractThis paper presents a substrate-integrated waveguide (SIW) mixed electric and magnetic coupling structure implemented on a single-layer substrate to create finite transmission zeros (TZs), which can be used to design microwave filters with higher frequency selectivity. Mixed coupling is realized by three slot-lines on the top metal plane combined with an iris-window between two adjacent SIW cavities. The electric and magnetic coupling can be separately controlled by adjusting the dimensions of the slot-lines and the width of the iris-window, and a controllable TZ below or above the passband can be produced. Furthermore, a detailed analysis of the mixed coupling structure is presented. To demonstrate the validity of the proposed structure, third- and fourth-order cross-coupled generalized Chebyshev bandpass filters are designed and fabricated using the standard printed circuit board process. The experimental results are in good agreement with the simulation results. The filters exhibit simple structure and good frequency selectivity.


Sign in / Sign up

Export Citation Format

Share Document