Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry
This study assesses the potential environmental impacts related to the energy valorization of agro-food industry waste thought the Life Cycle Assessment methodology (ISO 14040). The system examined consists of a real anaerobic digester coupled with a combined anaerobic digester and heat and power plant (AD-CHP) operating in Sicily. The analysis accounts for all the impacts occurring from the delivery of the biomass to the AD-CHP plant up to the electricity generation in the CHP. The main outcomes of the study include the eco-profile of the energy system providing electricity and the assessment of the contribution of each life cycle phase aimed at identifying the potential improvement area. The obtained results highlight that the direct emissions associated with the biogas combustion process in the CHP account for 66% of the impact on climate change, and feedstock transport contributes 64% to the impact on mineral, fossil fuels, and renewable depletion. The contribution to the impacts caused by the electricity consumption is relevant in many of the environmental categories examined. It ranges from a minimum of about 22% for climate change up to 82% for freshwater ecotoxicity. Then actions aimed at reducing electricity consumption can significantly improve the environmental performances of the energy system examined.