scholarly journals The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5712
Author(s):  
Matjaž Perpar ◽  
Zlatko Rek

We carried out several numerical experiments to analyze how different boundary conditions affect the ability to detect small pipeline leaks. Our method is based on determining the soil temperature gradient above a buried district heating channel. The equivalent thermal conductivity of a wet insulation (λeq) value of 0.5 W/(m·K) was used to mimic a small water leakage. To evaluate the heat loss through the channel cross section, the heat conduction model was used for the pipe insulation, the concrete, and the soil, while the convection model was considered within the channel. The following effects were used to simulate different operating conditions: heat convection at the soil surface, leakage only from the supply or return pipe, soil height above the channel, soil thermal conductivity, and pipe diameter. With the exception of leakage only from the return pipe and low soil thermal conductivity 0.4 W/(m·K), the results showed a doubling of the soil temperature gradient when compared with the no-leakage case. This fact undoubtedly confirms the potential of the method, which is particularly suitable for leak detection in old pipelines that have priority for renovation. A key added value of this research is that the soil temperature gradient-based leak detection technique was found useful in most foreseeable DH operating situations.

2019 ◽  
Vol 9 (22) ◽  
pp. 4799 ◽  
Author(s):  
Leugim Corteze Romio ◽  
Débora Regina Roberti ◽  
Lidiane Buligon ◽  
Tamires Zimmer ◽  
Gervásio Annes Degrazia

Soil thermal conductivity is an important parameter for understanding soil heat transfer. It is difficult to measure in situ with available instruments. This work aims to propose a numerical model to estimate the thermal conductivity from the experimental measurements of soil heat flux and soil temperature. The new numerical model is based on the Fourier Law adding a constant empirical parameter to minimize the uncertainties contained in the data from field experiments. Numerically, the soil thermal conductivity is obtained by experimental linear data fitting by the Least Squares Method (LSM). This method avoids numerical indetermination when the soil temperature gradient or soil heat flux is very close to zero. The new model is tested against the different numerical methodology to estimate the soil heat flux and validated with field experimental data. The results indicate that the proposed model represents the experimental data satisfactorily. In addition, we show the influence of the different methodologies on evaluating the dependence of the thermal conductivity on the soil water content.


Energy ◽  
2012 ◽  
Vol 44 (1) ◽  
pp. 197-210 ◽  
Author(s):  
Matjaz Perpar ◽  
Zlatko Rek ◽  
Suvad Bajric ◽  
Iztok Zun

Author(s):  
Fan Gong ◽  
Yong Huang

The objective of this work is to investigate the flame stabilization mechanism and the impact of the operating conditions on the characteristics of the steady, lean premixed flames. It’s well known that the flame base is very important to the existence of a flame, such as the flame after a V-gutter, which is typically used in ramjet and turbojet or turbofan afterburners and laboratory experiments. We performed two-dimensional simulations of turbulent premixed flames anchored downstream of the heat-conducting V-gutters in a confined passage for kerosene-air combustion. The flame bases are symmetrically located in the shear layers of the recirculation zone immediately after the V-gutter’s trailing edge. The effects of equivalence ratio of inlet mixture, inlet temperature, V-gutter’s thermal conductivity and inlet velocity on the flame base movements are investigated. When the equivalence ratio is raised, the flame base moves upstream slightly and the temperature gradient dT/dx near the flame base increases, so the flame base is strengthened. When the inlet temperature is raised, the flame base moves upstream very slightly, and near the flame base dT/dx increases and dT/dy decreases, so the flame base is strengthened. As the V-gutter’s thermal conductivity increases, the flame base moves downstream, and the temperature gradient dT/dx near the flame base decreases, so the flame base is weakened. When the inlet velocity is raised, the flame base moves upstream, and the convection heat loss with inlet mixture increases, so the flame base is weakened.


2020 ◽  
Author(s):  
Tangtang Zhang ◽  
Xin Ma

<p>Soil temperature, soil water content and soil thermal properties were measured in an artificial forestland and a natural regrowth grassland from November in 2017 to July in 2019. The results show that the effects of soil temperature and soil water content on thermal properties are different in different soil condition. Soil thermal conductivity (K) and soil volumetric heat capacity (C) increase with increasing temperature in unfrozen period, but soil diffusivity (D) has no significant dynamic cycle and it almost keeps a constant level in a certain time. Soil thermal conductivity (K) decreases with increasing temperature during soil frozen period. The C and K increase with increasing soil water content in unfrozen period, while the D decrease with increasing soil water content.</p>


2012 ◽  
Vol 204-208 ◽  
pp. 650-653
Author(s):  
Jiang Li ◽  
Jun Ping Fu ◽  
Wu Gang Xie

System effectiveness and useful life of heat pump are directly affected by whether the design of ground heat exchanger is reasonable or not. The efficiency of heat exchanger has a close relationship with soil thermal conductivity coefficient and heat diffusivity, while soil moisture content affects soil thermal conductivity coefficient and soil temperature field. In this paper, we perform numerical simulation on CFD software. Then we study the soil temperature changes through field experiment in different soil moisture content on field experiment and finally obtained the relationships of the moisture content with the single U ground soil temperature field.


2021 ◽  
Vol 274 ◽  
pp. 08009
Author(s):  
Guzel Akhmerova ◽  
Ayrat Sibgatov ◽  
Roman Badrutdinov ◽  
Elza Khaziakhmetova ◽  
Rashid Maksudov

Distances from the insulation shell of pipelines duringchannelless laying to utility networks are recommended by regulatory documents, but in real conditions it is not always possible to comply with these parameters. Calculations have been made to verify that the gas pipeline can be laid next to the supply pipeline of the heating network in the problematic section of the installation where these restrictions are not met. The soil temperature on the wall of the gas pipeline case is determined to exclude the heating condition of polyethylene pipes above 40 °C for the entire period of operation. Soil temperatures at the intersection of the heating line and the gas pipeline were determined taking into account the real operating conditions of the district heating networks, the peculiarities of regulating the coolant parameters of the Russian heat systems and the state of thermal insulation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruixia He ◽  
Ning Jia ◽  
Huijun Jin ◽  
Hongbo Wang ◽  
Xinyu Li

Thermal properties are important for featuring the water-heat transfer capacity of soil. They are also key to many processes in earth sciences, such as the land surface processes and ecological and geoenvironmental dynamics and their changes in permafrost regions. With loose and porous structures, the organic matter layer in soil strata substantially influences soil thermal conductivity. So far, thermal conductivity of mineral soils has been explored extensively and in depth, but there are only limited studies on that of organic soils. In this study, influences of soil temperature, soil moisture saturation (SMS), and soil organic matter (SOM) content on soil thermal conductivity were analyzed on the basis of laboratory experiments on the silt-organic soil mixtures of varied mixing ratios. Results show that soil thermal conductivity declines slowly with the lowering temperatures from 10 to 0°C; however, it increases and finally stabilizes when temperature further lowers from 0 to -10°C. It is important to note that thermal conductivity peaks in the temperature range of -2~0°C (silty and organic-poor soil) and -5~0°C (organic-rich soil), possibly due to phase changes of ice/water in warm permafrost. Under both thawed and frozen states, soil thermal conductivity is positively related with SMS. However, with rising SOM content, the growth rate of soil thermal conductivity with SMS slows gradually. Given the same SMS, soil thermal conductivity declines exponentially with increasing SOM content. Based on the experimental and theoretical analyses, a new empirical computational formula of soil thermal conductivity is established by taking into account of the SOM content, SMS, and soil temperature. The results may help better parameterize in simulating and predicting land surface processes and for optimizing frozen soil engineering designs and provide theoretical bases for exploring the dynamic mechanisms of environmental changes in cold regions under a changing climate.


2015 ◽  
Vol 2 (1) ◽  
pp. 737-765
Author(s):  
J.-C. Calvet ◽  
N. Fritz ◽  
C. Berne ◽  
B. Piguet ◽  
W. Maurel ◽  
...  

Abstract. Soil moisture is the main driver of temporal changes in values of the soil thermal conductivity. The latter is a key variable in land surface models (LSMs) used in hydrometeorology, for the simulation of the vertical profile of soil temperature in relation to soil moisture. Shortcomings in soil thermal conductivity models tend to limit the impact of improving the simulation of soil moisture in LSMs. Models of the thermal conductivity of soils are affected by uncertainties, especially in the representation of the impact of soil properties such as the volumetric fraction of quartz (q), soil organic matter, and gravels. As soil organic matter and gravels are often neglected in LSMs, the soil thermal conductivity models used in most LSMs represent the mineral fine earth, only. Moreover, there is no map of q and it is often assumed that this quantity is equal to the volumetric fraction of sand. In this study, q values are derived by reverse modelling from the continuous soil moisture and soil temperature sub-hourly observations of the Soil Moisture Observing System – Meteorological Automatic Network Integrated Application (SMOSMANIA) network at 21 grassland sites in southern France, from 2008 to 2015. The soil temperature observations are used to retrieve the soil thermal diffusivity (Dh) at a depth of 0.10 m in unfrozen conditions, solving the thermal diffusion equation. The soil moisture and Dh values are then used together with the measured soil properties to retrieve soil thermal conductivity (λ) values. For ten sites, the obtained λ value at saturation (λsat) cannot be retrieved or is lower than the value corresponding to a null value of q, probably in relation to a high density of grass roots at these sites or to the presence of stones. For the remaining eleven sites, q is negatively correlated with the volumetric fraction of solids other than sand. The impact of neglecting gravels and organic matter on λsat is assessed. It is shown that these factors have a major impact on λsat.


Sign in / Sign up

Export Citation Format

Share Document