scholarly journals Flexibility from Combined Heat and Power: A Techno-Economic Study for Fully Renewable Åland Islands

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6423
Author(s):  
Tomi Thomasson ◽  
Kirsikka Kiviranta ◽  
Antton Tapani ◽  
Matti Tähtinen

As energy systems globally are transitioning into renewable energy, simultaneous targets of high self-sufficiency have led to complex system design proposals. While conventional technology solutions would reduce the complexity in theory, limitations in the potential outcome may exist. To address this dilemma, the work quantified the systemic value provided by a conventional solution; biomass combined heat and power (CHP) production, in terms of economic feasibility, provided flexibility and energy self-sufficiency. The analysis focused on the renewable energy integration of the Åland Islands, where the synergetic island energy system is heavily increasing the wind power capacity. While considering local fuel resource availability, multiple alternative energy system scenarios were constructed. To evaluate the scenarios, the work developed and validated a combined dispatch and investment optimization model. The results showed that the studied conventional approaches limited the achievable self-sufficiency in the power sector (80.6%), however, considerably increasing the value from the present state (18.5%). Second, compared to previous studies, the results indicated a low value from biomass CHP in the wind-based energy system. Instead, the combination of high wind capacity and power-to-heat enabled the best economic feasibility and high self-sufficiency, which could be further improved by lower electricity taxation.

Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


2015 ◽  
Vol 793 ◽  
pp. 323-327
Author(s):  
Y.M. Irwan ◽  
A.R. Amelia ◽  
M. Irwanto ◽  
M. Fareq ◽  
W.Z. Leow ◽  
...  

As a renewable energy and clean energy source, solar power has great development potential. This paper presents the potential of solar radiation and ambient temperature characteristics can be used as alternative energy. All data collected using Davis Vantage Pro2 Weather Station at Centre of Engineering for Renewable Energy (CERE) in Kangar, Perlis. All data consist of daily and monthly average was analyzed. The result shows the average solar radiation and ambient temperature is high in the middle of the year 2013 which is from April to September. These results provide useful information for the design of solar energy system in order to plan the productive system.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2639
Author(s):  
Mahelet G. Fikru ◽  
Gregory Gelles ◽  
Ana-Maria Ichim ◽  
Joseph D. Smith

Despite advances in small-scale hybrid renewable energy technologies, there are limited economic frameworks that model the different decisions made by a residential hybrid system owner. We present a comprehensive review of studies that examine the techno-economic feasibility of small-scale hybrid energy systems, and we find that the most common approach is to compare the annualized life-time costs to the expected energy output and choose the system with the lowest cost per output. While practical, this type of benefit–cost analysis misses out on other production and consumption decisions that are simultaneously made when adopting a hybrid energy system. In this paper, we propose a broader and more robust theoretical framework—based on production and utility theory—to illustrate how the production of renewable energy from multiple sources affects energy efficiency, energy services, and energy consumption choices in the residential sector. Finally, we discuss how the model can be applied to guide a hybrid-prosumer’s decision-making in the US residential sector. Examining hybrid renewable energy systems within a solid economic framework makes the study of hybrid energy more accessible to economists, facilitating interdisciplinary collaborations.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2083 ◽  
Author(s):  
Muhammad Faizan Tahir ◽  
Haoyong Chen ◽  
Muhammad Sufyan Javed ◽  
Irfan Jameel ◽  
Asad Khan ◽  
...  

Traditional energy supply infrastructures are on the brink of facing a major transformation due to energy security concerns, environment pollution, renewable energy intermittency and fossil fuel scarcity. A hybrid energy system constitutes the integration of different energy carriers like electricity, heat and fuel which play a vital role in addressing the above challenges. Various technological options like combined heat and power, heat pumps, electrolysers and energy storages ease out multiple carrier integration in an energy hub to increase system flexibility and efficiency. This work models the hybrid energy system of China for the year 2030 by using EnergyPLAN. Atmosphere decarbonization is achieved by replacing conventional coal and natural gas boilers with alternative individual heating sources like hydrogen operated micro combined heat and power natural gas micro combined heat and power and heat pumps. Moreover, rockbed storage as well as single and double penstock pumped hydro storages are added in the proposed system in order to cope with the stochastic nature of intermittent renewable energy such as wind and solar photovoltaic. The technical simulation strategy is employed to analyze the optimal combination of energy producing components by determining annual costs, fuel consumption and CO2 emissions. The results substantiate that a heat pump and double penstock pumped hydro storage addition to the individual heating and electricity network not only proves to be an economically viable option but also reduces fuel consumption and emissions.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3389 ◽  
Author(s):  
Sergio Bruno ◽  
Maria Dicorato ◽  
Massimo La Scala ◽  
Roberto Sbrizzai ◽  
Pio Alessandro Lombardi ◽  
...  

In this this paper, the optimal sizing of electric and thermal storage is applied to the novel definition of a net zero multi energy system (NZEMS). A NZMES is based on producing electricity exclusively from renewable energy sources (RES) and converting it into other energy forms to satisfy multiple energy needs of a community. Due to the intermittent nature of RES, storage resources are needed to increase the self-sufficiency of the system. Possible storage sizing choices are examined considering, on an annual basis, the solution of a predictive control problem aimed at optimizing daily operation. For each day of the year, a predictive control problem is formulated and solved, aimed at minimizing operating costs. Electric, thermal, and (electric) transportation daily curves and expected RES production are assessed by means of a model that includes environmental parameters. Test results, based on the energy model of a small rural village, show expected technical-economic performance of different planning solutions, highlighting how the renewable energy mix influences the choice of both thermal and electric storage, and how self-sufficiency can affect the overall cost of energy.


Sign in / Sign up

Export Citation Format

Share Document