scholarly journals Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7790
Author(s):  
Tommaso Campi ◽  
Silvano Cruciani ◽  
Francesca Maradei ◽  
Mauro Feliziani

Dynamic wireless power transfer (DWPT) of electric vehicles (EVs) is the future of urban mobility. The DWPT is often based on a series of short track pads embedded in road pavement that wirelessly transfers electrical energy to EVs equipped with a pickup coil for battery charging. An open problem with this technology is the variation of the coupling factor as a vehicle switches from one transmitting coil to another during its motion. This can cause a significant change in power with possible power spikes and holes. In order to overcome these issues, a new architecture is here proposed based on two pick-up coils mounted in the vehicle underneath. These identical receiver coils are placed in different positions under the vehicle (one in front and the other in the rear) and are activated one at a time so that inductive coupling is always good enough. This innovative configuration has two main advantages: (i) it maintains a nearly constant coupling factor, as well as efficiency and transferred power, as the vehicle moves along the electrified road; (ii) it significantly reduces the cost of road infrastructure. An application is presented to verify the proposed two-coil architecture in comparison with the traditional one-coil. The results of the investigation show the significant improvement achieved in terms of maximum power variation which is nearly stable with the proposed two-coil architecture (only 2.8% variation) while there are many power holes with the traditional single coil architecture. In addition, the number of the required transmitting coils is significantly reduced due to a larger separation between adjacent coils.

2017 ◽  
Vol 17 (22) ◽  
pp. 7526-7532 ◽  
Author(s):  
Karam Hwang ◽  
Dongwook Kim ◽  
Dongsoo Har ◽  
Seungyoung Ahn

2013 ◽  
Vol 846-847 ◽  
pp. 893-897
Author(s):  
Hua Xi Wen ◽  
Xian Gu ◽  
Dong Fang ◽  
De Dong Ding ◽  
Qiang Yu ◽  
...  

The inductive wireless power transfer efficiency is determined by the coupling factor and coil quality factors. This paper studies the coupling factor of an inductive power link (IPL) for wireless power transfer in advanced brain-machine interface applications. By comparison to the experimental results, the various design tools including Maxwell simulation and two analytical models are evaluated for prediction of the coupling factor. The coupling factors of IPLs with different design parameters are also analyzed. The results show that for specific wireless power transfer distances, the coupling factor of an IPL is mainly related to the size and fill ratio of the coils, while is almost independent of the coil track pitch, coil width/pitch ratio, and track thickness.


Author(s):  
Masood Rehman ◽  
Zuhairi Baharudin ◽  
Perumal Nallagownden ◽  
Badar Ul Islam

<p>Wireless power transfer (WPT) system has got significant attention in recent years due to its applications in consumer electronics, medical implants and electric vehicles etc. WPT is a promising choice in situations, where the physical connectors can be unreliable and susceptible to failure. The efficiency of WPT system decreasing rapidly with increasing air-gap. Many circuit topologies have been employed to enhance the efficiency of the WPT system. This paper presents the modelling and performance analysis of resonant wireless power transfer (RWPT) system using series-parallel-mixed topology. The power transfer efficiency analysis of the model is investigated via circuit theory. S-parameters have been used for measuring power transfer efficiency. Transient analysis is performed to realize the behavior of voltage and current waveforms using advanced design system (ADS) software. The proposed model is tested with two amplitudes i.e. 100 V peak-to-peak and 110 V peak-to-peak at the same frequency of 365.1 kHz. The overall result shows that the series-parallel-mixed topology model has higher efficiency at low coupling factor (K) for both voltage amplitudes.</p>


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1547
Author(s):  
Alicia Triviño ◽  
José M. González-González ◽  
José A. Aguado

The expansion on the use of Electric Vehicles demands new mechanisms to ease the charging process, making it autonomous and with a reduced user intervention. This paper reviews the technologies applied to the wireless charge of Electric Vehicles. In particular, it focuses on the technologies based on the induction principle, the capacitive-based techniques, those that use radiofrequency waves and the laser powering. As described, the convenience of each technique depends on the requirements imposed on the wireless power transfer. Specifically, we can state that the power level, the distance between the power source and the electric vehicle or whether the transfer is executed with the vehicle on the move or not or the cost are critical parameters that need to be taken into account to decide which technology to use. In addition, each technique requires some complementary electronics. This paper reviews the main components that are incorporated into these systems and it provides a review of their most relevant configurations.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2463
Author(s):  
Dragoș Marin Niculae ◽  
Marilena Stanculescu ◽  
Sorin Deleanu ◽  
Mihai Iordache ◽  
Lavinia Bobaru

Multiple magnetic couplings used to increase the link distance in wireless power transfer systems (WPTSs) are not new. An efficient power transfer in conditions of an extended link distance requires a series connection of the intermediate coils. However, all four connections of the emitter and receiver coils are equally possible. This present paper conducts an extensive analysis of WPTSs utilizing three magnetic couplings. The type of connection of the emitter and receiver coils represented the criterion utilized for the WPTS optimization assessment. The first step requires the determination of the schematic of the sinusoidal equivalent circuit. Then, one synthesizes the functions describing the system performances (e.g., the amount of delivered active power or efficiency) by applying the entirely symbolic and or the hybrid symbolic-numerical formalism. The output of such functions consists of appropriate representation in the frequency domain, based upon Laplace state variable equations (SVE) or complex or Laplace modified nodal equations (MNE). The dependency of the WPTS performance on the number of magnetic couplings and their parameters included a study on resistive loss minimization. The minimization applies to the intermediate coils, whereas the outcomes are the active delivered power and the power transfer efficiency—the first study case aimed at a comparison between two distinct WPTSs: three magnetic couplings versus two. The second case of the study compared the WPTSs having a series connection of three magnetic couplings with those built with the emitter-receiver resonators in parallel. One determined the normalized sensitivities as frequency functions, which depend on circuit resistances, load resistance and the coupling factor between the second and the third coil. The optimization algorithms are suitable for computing optimal parameters of the given circuit to ensure maximum and minimum values of the performance value. Good simulation examples followed the proposed optimization techniques.


Sign in / Sign up

Export Citation Format

Share Document