scholarly journals Biogas Generation from Maize and Cocksfoot Growing in Degraded Soil Enriched with New Zeolite Substrate

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 377
Author(s):  
Mariola Chomczyńska ◽  
Małgorzata Pawłowska ◽  
Oliwia Szczepaniak ◽  
Ewelina Duma

Degraded lands are potential areas for obtaining biomass which can serve as an energy source after its conversion into biogas. Thus, the studies on biogas production from maize and cocksfoot biomasses obtained from degraded soil supplemented with additions of new zeolite substrate (Z-ion as the nutrient carrier) and on arable soil (reference soil) were carried out during batch digestion tests. It was found that the biogas and biomethane potentials and specific energy of the test species growing in degraded soil enriched with Z-ion additions (1% and 5% v/v in the cases of cocksfoot and maize, respectively) did not differ significantly from the values of these parameters that were found for the plants growing in arable soil. The application of Z-ion to the degraded soil (especially in a dose of 5% v/v) resulted in an increase in the nitrogen content and decrease (below the lower optimum value) in the C/N ratio in the plant biomass. However, these changes did not negatively influence the final values of the biogas or methane potentials or the specific energy found for the maize biomass. Therefore, the study results indicated the usefulness of Z-ion substrate for improving the growth conditions for energy crops in degraded soils and, as a consequence, obtaining a plant feedstock suitable for the digestion process.

2015 ◽  
Vol 2 (3) ◽  
pp. 26-31
Author(s):  
K. Węglarzy ◽  
Yu. Shliva ◽  
B. Matros ◽  
G. Sych

Aim. To optimize the methane digestion process while using different recipes of substrate components of ag- ricultural origin. Methods. The chemical composition of separate components of the substrate of agricultural by-products, industrial wastes, fats of the agrorefi nery and corn silage was studied. Dry (organic) mass, crude protein (fat) fi ber, loose ash, nitrogen-free exhaust were estimated in the components and the productivity of biogas was determined along with the methane content. These data were used as a basis for daily recipes of the substrate and the analysis of biogas production at the biogas station in Kostkowice. Results. The application of by-products of agricultural production solves the problem of their storage on boards and in open containers, which reduces investment costs, related to the installation of units for their storage. Conclusions. The return on investment for obtaining electric energy out of agricultural biogas depends considerably on the kind of the substrate used and on technological and market conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Quang-Minh Nguyen ◽  
Duy-Cam Bui ◽  
Thao Phuong ◽  
Van-Huong Doan ◽  
Thi-Nham Nguyen ◽  
...  

The effect of copper, zinc, chromium, and lead on the anaerobic co-digestion of waste activated sludge and septic tank sludge in Hanoi was studied in the fermentation tests by investigating the substrate degradation, biogas production, and process stability at the mesophilic fermentation. The tested heavy metals were in a range of concentrations between 19 and 80 ppm. After the anaerobic tests, the TS, VS, and COD removal efficiency was 4.12%, 9.01%, and 23.78% for the Cu(II) added sample. Similarly, the efficiencies of the Zn(II) sample were 1.71%, 13.87%, and 16.1% and Cr(VI) efficiencies were 15.28%, 6.6%, and 18.65%, while the TS, VS, and COD removal efficiency of the Pb(II) added sample was recorded at 16.1%, 17.66%, and 16.03% at the concentration of 80 ppm, respectively. Therefore, the biogas yield also decreased by 36.33%, 31.64%, 31.64%, and 30.60% for Cu(II), Zn(II), Cr(VI), and Pb(II) at the concentration of 80 ppm, compared to the raw sample, respectively. These results indicated that Cu(II) had more inhibiting effect on the anaerobic digestion of the sludge mixture than Zn(II), Cr(VI), and Pb(II). The relative toxicity of these heavy metals to the co-digestion process was as follows: Cu (the most toxic) > Zn > Cr > Pb (the least toxic). The anaerobic co-digestion process was inhibited at high heavy metal concentration, which resulted in decreased removal of organic substances and produced biogas.


2010 ◽  
Vol 101 (24) ◽  
pp. 9527-9535 ◽  
Author(s):  
Ewa Klimiuk ◽  
Tomasz Pokój ◽  
Wojciech Budzyński ◽  
Bogdan Dubis

2007 ◽  
Vol 98 (8) ◽  
pp. 1664-1669 ◽  
Author(s):  
V.K. Verma ◽  
Y.P. Singh ◽  
J.P.N. Rai

2001 ◽  
Vol 44 (4) ◽  
pp. 109-116 ◽  
Author(s):  
A. Bonmatí ◽  
X. Flotats ◽  
L. Mateu ◽  
E. Campos

Feasibility of anaerobic digestion of pig slurry is dependent, among other factors, on the biogas production rate, which is low compared with other organic wastes, and on the profitable uses of surplus thermal energy produced, a limiting factor in warm geographical areas. The objectives of this work are determining whether low temperature thermal pretreatment (<90°C) improves pig slurry anaerobic digestion, and determining whether organic matter degradation during the thermal pretreatment is due to thermal phenomena (80°C) or to enzymatic ones (60°C). The thermal degradation tests showed that hydrolysis occurring during the thermal pretreatment is due to thermal phenomena. The increase in soluble substances were significantly larger at 80°C than at 60°C (both during 3 h). Two types of slurry were used in the batch anaerobic digestion tests. The effect of thermal pretreatment differed with the type of slurry: it was positive with almost non-degraded slurries containing low NH4+-N concentration, and negative (inhibition of the anaerobic digestion process) when using degraded slurries with high NH4+-N content.


2021 ◽  
Vol 15 (3) ◽  
pp. 302-311
Author(s):  
Jingping Dai ◽  
Jiang Li ◽  
Wang Zhifang ◽  
Xie Yuqing ◽  
Wang Xiaou ◽  
...  

To fill the gap between the rise in demand for energy and decline in the traditional energy sources such as coal, natural gas and nuclear energy, other alternative sources such as biogas are necessary. Studies have shown that the existing conditions within the fermentation realm control the microbial characteristics in biogas production. However, there is inadequate insight between the duration of fermentation and the microbial diversity, and with specific emphasis to cow manure as the substrate under low temperature fermentation. This study aimed at providing additional insight on the effect of varying fermentation duration (0 to 60 days) on the composition of the dominant microbial flora on cow dung based low-temperature (15 °C) biogas fermentation using metagenomics and metabolomics analyses approach. The study results showed that the main dominant community in the process of methanogenesis are the Spirochaetae, Synergistetes and Chloroflexi, and are new flora in the methane phase. In the peak stage of low-temperature biogas fermentation, the dominant bacteria groups were Methanosarcina and after adding 10% concentration of L1 bacteria. The prediction of metabolic pathway was mainly carbohydrate metabolism and amino acid metabolism with succinyl-CoA synthase a subunit, lactaldehyde reductase and the glutamate-glyoxylate aminotransferase being the main unique enzymes. The study therefore supports the potential of involving the reported dominant microbial communities and related enzymatic activities for improved biogas production under low temperature conditions.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3761 ◽  
Author(s):  
Abdullah Nsair ◽  
Senem Onen Cinar ◽  
Ayah Alassali ◽  
Hani Abu Qdais ◽  
Kerstin Kuchta

The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 882
Author(s):  
Dhananjay Kumar ◽  
Sandeep Kushwaha ◽  
Chiara Delvento ◽  
Žilvinas Liatukas ◽  
Vivekanand Vivekanand ◽  
...  

Drought stress is one of the key plant stresses reducing grain yield in cereal crops worldwide. Although it is not a breeding target in Northern Europe, the changing climate and the drought of 2018 have increased its significance in the region. A key challenge, therefore, is to identify novel germplasm with higher drought tolerance, a task that will require continuous characterization of a large number of genotypes. The aim of this work was to assess if phenotyping systems with low-cost consumer-grade digital cameras can be used to characterize germplasm for drought tolerance. To achieve this goal, we built a proximal phenotyping cart mounted with digital cameras and evaluated it by characterizing 142 winter wheat genotypes for drought tolerance under field conditions. The same genotypes were additionally characterized for seedling stage traits by imaging under controlled growth conditions. The analysis revealed that under field conditions, plant biomass, relative growth rates, and Normalized Difference Vegetation Index (NDVI) from different growth stages estimated by imaging were significantly correlated to drought tolerance. Under controlled growth conditions, root count at the seedling stage evaluated by imaging was significantly correlated to adult plant drought tolerance observed in the field. Random forest models were trained by integrating measurements from field and controlled conditions and revealed that plant biomass and relative growth rates at key plant growth stages are important predictors of drought tolerance. Thus, based on the results, it can be concluded that the consumer-grade cameras can be key components of affordable automated phenotyping systems to accelerate pre-breeding for drought tolerance.


Sign in / Sign up

Export Citation Format

Share Document