Clustering-Based Energy Management of Residential Loads by using Artificial Intelligence
Developing countries have witnessed a remarkable surge in the energy crisis due to the supply and demand gap. One of the solutions to overcome this problem is the optimal use of energy that can be achieved by employing demand side management (DSM) and demand response (DR) methods intelligently. Machine learning and data analysis tools help us create intelligent systems that motivate us to use machine learning to implement DSM/DR programs. In this paper, a novel DSM algorithm is introduced to implement DSM intelligently by using artificial intelligence. The results show an efficient implementation of an artificial neural network (ANN) along with demand side management, whereas the peak and off-peak loads were normalized to a certain range where a perfect agreement between supply and demand can be reached.