scholarly journals Effects of Lime Application and Understory Removal on Soil Microbial Communities in Subtropical Eucalyptus L’Hér. Plantations

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Songze Wan ◽  
Zhanfeng Liu ◽  
Yuanqi Chen ◽  
Jie Zhao ◽  
Qin Ying ◽  
...  

Soil microorganisms play key roles in ecosystems and respond quickly to environmental changes. Liming and/or understory removal are important forest management practices and have been widely applied to planted forests in humid subtropical and tropical regions of the world. However, few studies have explored the impacts of lime application, understory removal, and their interactive effects on soil microbial communities. We conducted a lime application experiment combined with understory removal in a subtropical Eucalyptus L’Hér. plantation. Responses of soil microbial communities (indicated by phospholipid fatty acids, PLFAs), soil physico-chemical properties, and litter decomposition rate to lime and/or understory removal were measured. Lime application significantly decreased both fungal and bacterial PLFAs, causing declines in total PLFAs. Understory removal reduced the fungal PLFAs but had no effect on the bacterial PLFAs, leading to decreases in the total PLFAs and in the ratio of fungal to bacterial PLFAs. No interaction between lime application and understory removal on soil microbial community compositions was observed. Changes in soil microbial communities caused by lime application were mainly attributed to increases in soil pH and NO3–-N contents, while changes caused by understory removal were mainly due to the indirect effects on soil microclimate and the decreased soil dissolved carbon contents. Furthermore, both lime application and understory removal significantly reduced the litter decomposition rates, which indicates the lime application and understory removal may impact the microbe-mediated soil ecological process. Our results suggest that lime application may not be suitable for the management of subtropical Eucalyptus plantations. Likewise, understory vegetation helps to maintain soil microbial communities and litter decomposition rate; it should not be removed from Eucalyptus plantations.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Caroline A. Cuer ◽  
Renato de A. R. Rodrigues ◽  
Fabiano C. Balieiro ◽  
Jacqueline Jesus ◽  
Elderson P. Silva ◽  
...  

2013 ◽  
Vol 310 ◽  
pp. 80-86 ◽  
Author(s):  
Jie Zhao ◽  
Songze Wan ◽  
Shenglei Fu ◽  
Xiaoli Wang ◽  
Min Wang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1652
Author(s):  
Péter Csontos ◽  
Márton Mucsi ◽  
Péter Ragályi ◽  
Júlia Tamás ◽  
Tibor Kalapos ◽  
...  

Organisms with different life histories are able to act as indicators of different characteristics of their environment. Here, we compared the precision of habitat indication by the vegetation and soil microbial communities in four salt-affected pastures: annual open salt sward, Pannonic Puccinellia limosa hollow, Artemisia saline puszta and grassy saline puszta. Dissimilarity of habitats was evaluated by standardized principal component analysis (PCA) based on four different datasets: catabolic profiles of microbial communities in June (a) and September (b), composition of vascular vegetation (c) and physical and chemical properties of the soil (d). Procrustes analysis was used to quantify the resemblance between pairs of PCA ordinations based on soil properties (d) and various biotic communities (a, b, c). PCA ordination based on vegetation most closely matched the soil data-based ordination, thus vegetation appears to better indicate habitat conditions than soil microbial communities do. For microbial communities, a better agreement with the soil data-based ordination was reached in September than in June. Most probably, the long-lived sedentary habit of perennial plants in these communities requires adaptation to long-term average habitat conditions. In contrast, short-lived soil microbes can quickly follow environmental changes, thus the composition of soil microbial communities better reflect actual soil conditions.


2009 ◽  
Vol 39 (11) ◽  
pp. 2263-2271 ◽  
Author(s):  
A. Chatterjee ◽  
L.J. Ingram ◽  
G.F. Vance ◽  
P.D. Stahl

As forests develop, changes in soil organic matter quantity and quality affect both nutrient dynamics and microbial community structure. Litter decomposition and nitrogen mineralization in association with soil microbial communities were compared between 45- and 135-year-old lodgepole pine ( Pinus contorta var. latifolia (Englem.)) stands in southeastern Wyoming, USA. Compared with the 45-year-old stand, the 135-year-old stand was found to have greater live-tree biomass, litter decomposition rates (264 versus 135 mg·(g litter)–1·year–1), soil nitrification rates (0.38 versus 0.19 µg NO3–·(g soil)–1 after 265 days of field incubation), and total phospholipid fatty acid (PLFA) concentrations (25 versus 9.2 nmol·(g soil)–1 at 0–5 cm depth). Canonical correspondence analysis indicated that variation of PLFA profiles within the 45-year-old stand was explained by soil pH and bulk density, whereas soil process rates explained the distributions of PLFA profiles within the 135-year-old stand. The results of these studies indicate that stand age influences live-tree biomass and soil properties that can lead to changes in litter decomposition rates and soil microbial communities in lodgepole pine forests.


mBio ◽  
2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Jizhong Zhou ◽  
Ye Deng ◽  
Feng Luo ◽  
Zhili He ◽  
Qichao Tu ◽  
...  

ABSTRACT Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on “species” richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO2 enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO2 and ambient CO2 (aCO2) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO2 and aCO2, at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO2 dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. IMPORTANCE Microorganisms are the foundation of the Earth's biosphere and play integral and unique roles in various ecosystem processes and functions. In an ecosystem, various microorganisms interact with each other to form complicated networks. Elucidating network interactions and their responses to environmental changes is difficult due to the lack of appropriate experimental data and an appropriate theoretical framework. This study provides a conceptual framework to construct interaction networks in microbial communities based on high-throughput functional gene array hybridization data. It also first documents that elevated carbon dioxide in the atmosphere dramatically alters the network interactions in soil microbial communities, which could have important implications in assessing the responses of ecosystems to climate change. The conceptual framework developed allows microbiologists to address research questions unapproachable previously by focusing on network interactions beyond the listing of, e.g., the number and abundance of species. Thus, this study could represent transformative research and a paradigm shift in microbial ecology.


Sign in / Sign up

Export Citation Format

Share Document