scholarly journals Genetic Diversity of Paeonia rockii (Flare Tree Peony) Germplasm Accessions Revealed by Phenotypic Traits, EST-SSR Markers and Chloroplast DNA Sequences

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 672
Author(s):  
Xin Guo ◽  
Fangyun Cheng ◽  
Yuan Zhong

Research Highlights: This study, based on the first collection of cultivated Paeonia rockii (flare tree peony, FTP) germplasm across the main distribution area by our breeding desires, comprehensively evaluates these accessions by using phenotypic traits, expressed sequence tag (EST)-simple sequence repeat (SSR) markers and chloroplast DNA sequences (cpDNA). The results show that these accessions collected selectively by us can represent the genetic background information of FTP as a germplasm of tree crops. Background and Objectives: FTP has high cultural, ornamental and medicinal value traditionally, as well as recently presenting a significance as an emerging edible oil with high α-linolenic acid contents in the seeds. The objectives of this study are to reveal the characteristics of the genetic diversity of FTP, as well as to provide scientific suggestions for the utilization of tree peony breeding and the conservation of germplasm resource. Materials and Methods: Based on the phenotypic traits, EST-SSR markers and chloroplast DNA sequence variation, we studied the diversity of a newly established population of 282 FTP accessions that were collected and propagated by ourselves in our breeding project in recent years. Results: (1) There was an abundant variation in phenotype of the accessions, and the phenotypic variation was evenly distributed within the population, without significant hierarchical structure, (2) the EST-SSR data showed that these 282 accessions had relatively high genetic diversity, in which a total of 185 alleles were detected in 34 pairs of primers. The 282 accessions were divided into three distinct groups, and (3) the chloroplast DNA sequences (cpDNA) data indicated that these accessions had a higher genetic diversity than the population level and a lower genetic diversity than the species level of wild P. rockii, and the existing spatial genetic structure of these accessions can be divided into two branches. Conclusions: From the results of the three analyses, we found that these accessions can fully reflect the genetic background information of FTP germplasm resources, so their protection and utilization will be of great significance for genetic improvement of woody peonies.

2012 ◽  
Vol 1 ◽  
pp. 344-352 ◽  
Author(s):  
Lixia He ◽  
Zhili Suo ◽  
Chuanhong Zhang ◽  
Xiaobai Jin ◽  
Dixuan Zhao ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Feifei Wu ◽  
Shangxiong Zhang ◽  
Qiu Gao ◽  
Fang Liu ◽  
Jianli Wang ◽  
...  

AbstractVicia amoena is a high-nutritional quality forage similar to alfalfa. However, studies on the genetic background of V. amoena are scarce. In the present study, the genetic variation of 24 V. amoena populations was assessed with newly developed simple sequence repeat (SSR) markers. A total of 8799 SSRs were identified in the V. amoena genomic-enriched sequences, and the most abundant repeat number was four. A total of 569 sampled individuals were assayed to evaluate the genetic diversity of the V. amoena populations based on 21 polymorphic SSR primers. The polymorphism information content (PIC) ranged from 0.896 to 0.968, with an average of 0.931, which indicated that the markers were highly informative. Based on analysis of molecular variance, 88% of the variance occurred within populations, and the remaining 12% of the variance occurred among populations. The high degree of gene flow (Nm= 4.958) also showed slight differentiation among the V. amoena populations. The V. amoena populations were mainly clustered by steppe and mountain habitats based on principal coordinate analysis (PCoA) and STRUCTURE analysis. This indicated that the elevation and special habitat of geographical origins may be important factors affecting the clustered pattern of V. amoena populations. Neighbour-joining (NJ) analysis did not separate the populations well by geographical origin, which indicated that the genetic structure of V. amoena was complex and needs further study. Overall, our results showed that the newly developed SSR markers could benefit the V. amoena research community by providing genetic background information to help establish a foundation for breeding improvement and germplasm resource conservation.


Tropics ◽  
2003 ◽  
Vol 13 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Dayananda Thawalama GAMAGE ◽  
Morley de SILVA ◽  
Akira YOSHIDA ◽  
Alfred E. SZMIDT ◽  
Tsuneyuki YAMAZAKI

2012 ◽  
Vol 298 (6) ◽  
pp. 1151-1165 ◽  
Author(s):  
Marina Grabiele ◽  
Laura Chalup ◽  
Germán Robledo ◽  
Guillermo Seijo

Sign in / Sign up

Export Citation Format

Share Document