scholarly journals Altitude and Vegetation Affect Soil Organic Carbon, Basal Respiration and Microbial Biomass in Apennine Forest Soils

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 710
Author(s):  
Luisa Massaccesi ◽  
Mauro De Feudis ◽  
Angelo Leccese ◽  
Alberto Agnelli

Both altitude and vegetation are known to affect the amount and quality of soil organic matter (SOM) and the size and activity of soil microbial biomass. However, when altitude and vegetation changes are combined, it is still unclear which one has a greater effect on soil chemical and biochemical properties. With the aim of clarifying this, we tested the effect of altitude (and hence temperature) and vegetation (broadleaf vs pine forests) on soil organic carbon (SOC) and soil microbial biomass and its activity. Soil sampling was carried out in two adjacent toposequences ranging from 500 to 1000 m a.s.l. on a calcareous massif in central Italy: one covered only by Pinus nigra J.F. Arnold forests, while the other covered by Quercus pubescens Willd., Ostrya carpinifolia Scop. and Fagus sylvatica L. forests, at 500, 700 and 1000 m a.s.l., respectively. The content of SOC and water-extractable organic carbon (WEOC) increased with altitude for the pine forests, while for the broadleaf forests no trend along the slope occurred, and the highest SOC and WEOC contents were observed in the soil at 700 m under the Ostrya carpinifolia forest. With regard to the soil microbial community, although the size of the soil microbial biomass (Cmic) generally followed the SOC contents along the slope, both broadleaf and pine forest soils showed similar diminishing trends with altitude of soil respiration (ΣCO2-C), and ΣCO2-C:WEOC and ΣCO2-C:Cmic ratios. The results pointed out that, although under the pine forests’ altitude was effective in affecting WEOC and SOC contents, in the soils along the broadleaf forest toposequence this effect was absent, indicating a greater impact of vegetation than temperature on SOC amount and pool distribution. Conversely, the similar trend with altitude of the microbial activity indexes would indicate temperature to be crucial for the activity of the soil microbial community.

2018 ◽  
Vol 2 ◽  
pp. 96-101
Author(s):  
Dil Kumar Limbu ◽  
Madan Koirala

The soil microbial biomass carbon to soil organic carbon ratio is a useful measure to monitor soil organic matter and serves as a sensitive index than soil organic carbon alone. Thus, the objective of this study is to identify and quantify the present status of ratio of soil microbial biomass carbon to soil organic carbon in Himalayan rangeland and to make recommendations for enhancing balance between microbial carbon and organic carbon of the soil. To meet the aforementioned objective, a field study was conducted from 2011 to 2013 following the Walkley-Black, Chromic acid wet oxidation method, and chloroform fumigation method for analysis of microbial carbon and organic carbon respectively. The study showed that the heavily grazed plot had significantly less value of ratio than occasionally grazed and ungrazed plots. The ratio was significantly high on legume seeding plot compared to nonlegume plot, but the ratio was independent of soil depth. Soil microbial biomass appeared to be more responsive than soil organic matter.


2013 ◽  
Vol 43 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Ya-Lin Hu ◽  
Kangho Jung ◽  
De-Hui Zeng ◽  
Scott X. Chang

Chronic nitrogen (N) and (or) sulfur (S) deposition to boreal forests in the Athabasca oil sands region (AOSR) in Alberta, Canada, has been caused by oil sands mining and extraction/upgrading activities. It is important that we understand the response of microbial community function to chronic N and S deposition as microbial populations mediate soil carbon (C) and N cycles and affect ecosystem resilience. To evaluate the impact of N and (or) S deposition on soil microbial community functions, we conducted a simulated N and S deposition experiment in a boreal mixedwood forest with the following four treatments: control (CK), N addition (+N, 30 kg N·ha−1 as NH4NO3), S addition (+S, 30 kg S·ha−1 as NaSO4), and N plus S addition (+NS, 30 kg N·ha−1 + 30 kg S·ha−1), from 2006 to 2010. Nitrogen and (or) S deposition did not change soil organic carbon, total N, dissolved organic C and N, or soil microbial biomass C and N. Soil microbial community-level physiological profiles, however, were strongly affected by 5 years of N and (or) S addition. Soil β-glucosidase activity in the +NS treatment was greater than that in the +S treatment, and S addition decreased soil arylsulfatase; however, urease and dehydrogenase activities were not affected by the simulated N and (or) S deposition. Our data suggested that N and (or) S deposition strongly affected soil microbial community functions and enzymatic activities without changing soil microbial biomass in the studied boreal forest.


2012 ◽  
Vol 25 (1) ◽  
pp. 55-61 ◽  
Author(s):  
P.G. Dennis ◽  
A.D. Sparrow ◽  
E.G. Gregorich ◽  
P.M. Novis ◽  
B. Elberling ◽  
...  

AbstractThe soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial activity. The large ELFA concentrations relative to soil organic carbon and the increases in ELFA response to organic carbon addition are both interpreted as evidence for the soil microbial community containing organisms with efficient scavenging mechanisms for carbon. The diversity of the ELFA profiles declined in response to organic carbon addition, suggesting the responses were driven by a portion of the community increasing in dominance whilst others declined.


2016 ◽  
Author(s):  
Usman Khalid Chaudhry ◽  
Salman Shahzad ◽  
Muhammad Nadir Naqqash ◽  
Abdul Saboor ◽  
Sana Yaqoob ◽  
...  

A wide variety of soil amendments like manures, compost, humic acid and bio-sorbents have been used to make nutrients available to crops as well as to protect them from toxic elements. Among soil amendments, biochar has been known to improve soil crumping, soil nutrients’ availability to plants and ultimately the yield of crops. A field experiment was conducted by using biochar prepared from Dalbergia sissoo Roxb. wood by brick batch process. Two doses of biochar were applied to soil 0 and 12 t ha-1. Fertilizer rates used in the experiments were 25% recommended doses of fertilizers (RDF), 50% RDF, 75% RDF and 100% RDF alone & with biochar applied under two factorial randomized complete block design in natural field conditions (RDF of NPK fertilizer is 120-60-60 kg ha-1) . Soil physico-chemical properties viz., bulk density, particle density, porosity, pH, electrical conductivity, organic matter, soil organic carbon, total nitrogen, available phosphorus, available potassium, soil organic carbon, soil microbial biomass carbon and soil microbial biomass nitrogen were measured from the soil samples collected from 0-30 cm depth. All these parameters varied significantly among the treatments. A combined treatment of biochar and 50% of the recommended dose of NPK was most effective for soil conditioning. Agronomic parameters were also measured by standard methods. Due to chelation of heavy metal ions and availability of nutrients to the soil, yield of the crop may significantly increase due to cumulative treatment of fertilizer and biochar but upto a certain limit.


2019 ◽  
Vol 11 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Chowlani Manpoong ◽  
S.K. Tripathi

Changes in land use and improper soil management have led to severe land degradation around the globe through the modification in soil physicochemical and biological processes. This study aimed to assess the soil properties of different land use system types. Soil samples (0-15 cm depth) were collected from five land uses; Rubber Plantation (RP), Oil Palm Plantation (OPP), Bamboo Forest (BF), Fallow Land (FL) and Natural Forest (NF) and analyzed for bulk density, soil texture, soil pH, soil moisture, soil carbon, total nitrogen, ammonium, nitrate, soil microbial biomass carbon, soil respiration. Soil pH was lower than 4.9 in all the sites indicating that the surface soil was highly acidic. Soil organic carbon (SOC) and total nitrogen (TN) values ranged from 2.02% to 2.81% and 0.22% to 0.3% respectively. Soil organic carbon (SOC), total nitrogen (TN) and soil microbial biomass (SMBC) were highly affected by soil moisture. NH4+-N and NO3--N ranged from 5.6 mg kg-1 to 10.2 mg kg-1 and 1.15 mg kg-1 to 2.81 mg kg-1 respectively. NF soils showed the maximum soil microbial biomass carbon (SMBC) whereas the minimum was observed in BF with values ranging from 340 mg kg-1 to 345 mg kg-1. Basal respiration was highest in RP (375 mg CO2 m-2 hr-1) and lowest in BF (224 mg CO2 m-2 hr-1). The findings demonstrated significant effect (p<0.05) of land use change on soil nutrient status and organic matter. Findings also indicated that land use change deteriorated native soil physicochemical and biological properties, but that land restoration practices through longer fallow period (>10 years) likely are successful in promoting the recovery of some soil characteristics.


Sign in / Sign up

Export Citation Format

Share Document