scholarly journals Carbon Losses from Decomposing Windrowed Sitka Spruce Woody Debris Over a 16-Year Chronosequence

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 244
Author(s):  
Brian Tobin ◽  
Giovanni Pastore ◽  
Maarten Nieuwenhuis

Meeting the reporting requirements of the Kyoto Protocol has focused attention on the potential of forests in sustainably sequestering carbon (C) to mitigate the effects of rising levels of atmospheric CO2. Much uncertainty remains concerning the ultimate effect of management on such sequestration effects. The management of woody debris (WD) and other deadwood stocks is an example of a management intervention with the scope of affecting the source-sink dynamics of forest C. Windrowing is the most commonly employed approach to the management of post-harvest WD. This study investigated the quantities of windrowed deadwood C across a chronosequence of reforested commercial Sitka spruce stands in Ireland and how its decomposition rate affected its contribution to forest C sequestration. The C stocks in windrowed WD ranged from 25 to 8 t C ha−1 at the 4- and 16-year-old stands, respectively. Losses due to the decomposition of these stocks ranged from 5.15 t C ha−1 yr−1 at the youngest site (4 years old) to 0.68 t C ha−1 yr−1 at the oldest site (16 years old). Using a visual decay-class categorization of WD components and an assessment of wood density, decay rate constants were estimated for logs, branches, and stumps (the main WD constituents of windrows) as 0.037, 0.038, and 0.044, respectively. These results, derived from stand stock evaluations, were placed into context with data previously published from the same chronosequence that characterized the day-to-day fluxes to or from this pool. This comparison indicated that though only a very small quantity of C was lost in dissolved leachate form, the most significant pathway for loss was respiratory and ranged from 16 to 8 t C ha−1 yr−1 at the 9- and 16-year-old sites. These estimates were many times greater in extent than estimates made using a density-loss approach, the difference indicating that fragmentation and weathering play a large role in woody decomposition in intensively managed forests.

Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 83 ◽  
Author(s):  
W. E. Cotching

Soil carbon (C) stocks were calculated for Tasmanian soil orders to 0.3 and 1.0 m depth from existing datasets. Tasmanian soils have C stocks of 49–117 Mg C/ha in the upper 0.3 m, with Ferrosols having the largest soil C stocks. Mean soil C stocks in agricultural soils were significantly lower under intensive cropping than under irrigated pasture. The range in soil C within soil orders indicates that it is critical to determine initial soil C stocks at individual sites and farms for C accounting and trading purposes, because the initial soil C content will determine if current or changed management practices are likely to result in soil C sequestration or emission. The distribution of C within the profile was significantly different between agricultural and forested land, with agricultural soils having two-thirds of their soil C in the upper 0.3 m, compared with half for forested soils. The difference in this proportion between agricultural and forested land was largest in Dermosols (0.72 v. 0.47). The total amount of soil C in a soil to 1.0 m depth may not change with a change in land use, but the distribution can and any change in soil C deeper in the profile might affect how soil C can be managed for sequestration. Tasmanian soil C stocks are significantly greater than those in mainland states of Australia, reflecting the lower mean annual temperature and higher precipitation in Tasmania, which result in less oxidation of soil organic matter.


2002 ◽  
Vol 32 (5) ◽  
pp. 768-778 ◽  
Author(s):  
Olga N Krankina ◽  
Mark E Harmon ◽  
Yuri A Kukuev ◽  
Rudolf F Treyfeld ◽  
Nikolai N Kashpor ◽  
...  

To assess regional stores of coarse woody debris (CWD) in seven major forest regions of Russia, we combined data collected as part of the routine forest inventory with measurements in 1044 sample plots and the results of density sampling of 922 dead trees. The stores of CWD in the western part of Russia (St. Petersburg, Central, Khanty-Mansi, and Novosibirsk regions) were on average lower (14–20 m3/ha or 4.0–5.8 Mg/ha) than in the East Siberian and Far Eastern regions (40–51 m3/ha or 11.0–14.4 Mg/ha). The difference in CWD stores was particularly large between young forests in two western regions (2.4 Mg/ha in St. Petersburg and 3.4 Mg/ha in the Central region) and in the east (20.4–24.4 Mg/ha). This difference is associated with the prevailing disturbance type: clear-cut harvest in western Russia and natural disturbances in the east. Analysis of variance in CWD stores indicates that region, dominant species, forest age group, productivity class, and interactions of these factors explain 87–88% of the total variance and the strongest effects are for age group and region. Lower stores of CWD within the intensively managed forest regions suggest that further expansion of forest use in many regions of Russia may reduce regional stores of CWD and carbon.


2017 ◽  
Vol 28 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Steven M. Grodsky ◽  
Christopher E. Moorman ◽  
Sarah R. Fritts ◽  
Joshua W. Campbell ◽  
Clyde E. Sorenson ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1297
Author(s):  
Laura Victoria Perdomo-Trujillo ◽  
Jose Ernesto Mancera-Pineda ◽  
Jairo Humberto Medina-Calderón ◽  
David Alejandro Sánchez-Núñez ◽  
Marie-Luise Schnetter

Mangroves provide multiple ecosystem services and are essential for mitigating global warming owing to their capacity to store large carbon (C) stocks. Due to widespread mangrove degradation, actions have been implemented to restore them worldwide. An important representative case in Colombia is the Ciénaga Grande de Santa Marta’s restoration plan. This management intervention focused on restoring the natural hydrological functioning after massive mangrove mortality (~25,000 ha) due to soil hyper-salinization after river water input from the Magdalena River was eliminated. A partial recovery occurred during subsequent years, and hydrological management is still being implemented today. To understand how the degradation and subsequent management have affected mangrove C stocks, we compared C stocks in stands with different intervention levels reflected in their current forest structure. We found that the total C stock (398–1160 Mg C ha−1) was within the range measured in other neotropical mangroves without vegetation deterioration. The aboveground C was significantly higher in the stands where hydraulic connectivity was restored. By contrast, the belowground C was higher in the stands with low hydraulic connectivity due to channel clogging and a lack of sufficient maintenance. Our results show that hydrological management measures influenced above- and belowground C stocks, even at a 2 m depth. In addition, a strong indirect relationship useful for estimating carbon content from organic matter content was found.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Olivier Fradette ◽  
Charles Marty ◽  
Pascal Tremblay ◽  
Daniel Lord ◽  
Jean-François Boucher

Allometric equations use easily measurable biometric variables to determine the aboveground and belowground biomasses of trees. Equations produced for estimating the biomass within Canadian forests at a large scale have not yet been validated for eastern Canadian boreal open woodlands (OWs), where trees experience particular environmental conditions. In this study, we harvested 167 trees from seven boreal OWs in Quebec, Canada for biomass and allometric measurements. These data show that Canadian national equations accurately predict the whole aboveground biomass for both black spruce and jack pine trees, but underestimated branches biomass, possibly owing to a particular tree morphology in OWs relative to closed-canopy stands. We therefore developed ad hoc allometric equations based on three power models including diameter at breast height (DBH) alone or in combination with tree height (H) as allometric variables. Our results show that although the inclusion of H in the model yields better fits for most tree compartments in both species, the difference is minor and does not markedly affect biomass C stocks at the stand level. Using these newly developed equations, we found that carbon stocks in afforested OWs varied markedly among sites owing to differences in tree growth and species. Nine years after afforestation, jack pine plantations had accumulated about five times more carbon than black spruce plantations (0.14 vs. 0.80 t C·ha−1), highlighting the much larger potential of jack pine for OW afforestation projects in this environment.


2008 ◽  
Vol 54 (No. 4) ◽  
pp. 189-193
Author(s):  
M. Żmihorski

Clearcuts are one of the results of forest management. The aim of this study was to assess the effect of clearcuts on bird communities in a managed forest in Western Poland. I applied the method of point transect counts. 20 points were located near clearcuts (less than 100 m from the nearest clearcut) and 25 points in the forest interior. In total, 36 bird species were recorded. On average, I found 9.20 bird species at points located near clearcuts and 6.72 species at points situated in the forest interior, and the difference was significant. The cumulative number of bird species for a given number of sampling points in the vicinity of clearcuts was higher than in the forest interior. The obtained results indicate that in managed, even-aged forests the generation of clearcuts can lead to an increase in local bird species richness.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


2018 ◽  
Vol 285 (1885) ◽  
pp. 20181240 ◽  
Author(s):  
Xiaojuan Liu ◽  
Stefan Trogisch ◽  
Jin-Sheng He ◽  
Pascal A. Niklaus ◽  
Helge Bruelheide ◽  
...  

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3–20 tree species) and stand age (22–116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha −1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO 2 concentrations and global warming.


Sign in / Sign up

Export Citation Format

Share Document