High Level of Phenotypic Differentiation of Common Yew (Taxus baccata L.) Populations in the North-Western Part of the Balkan Peninsula
Common or English yew (Taxus baccata L., Taxaceae) is a conifer species, native to Europe, northern Africa, Asia Minor and Caucasus. It is a dioecious, wind-pollinated and animal-dispersed tree, known for its high-quality wood and medicinal properties, albeit poisonous. The species is rare and has been legally protected at the European and national levels. In addition, its low population density and disjunct character of distribution have reinforced the need for its protection as regeneration is mostly lacking. The aim of this study was to phenotypically characterise the north-western Balkan yew populations. Phenotypic diversity was examined for seven populations, using morphometric analysis of nine phenotypic traits of needles. Descriptive and multivariate statistical analyses were conducted to evaluate the inter- and intrapopulation variability. In addition, to test correlations between geographic, climatic and phenotypic data, Mantel test was used. We identified a geographic structure across studied populations that exhibited high levels of variability on intra- and interpopulation levels. Two groups of populations have been defined and are consistent with previously described genetic divergent lineages from separate refugia. In addition, a significant correlation between phenotypic and geographic data were revealed, i.e., isolation by distance (IBD). However, the Mantel test revealed no significant correlation between morphometric and environmental data. In conclusion, our data reveal that the historical events and persistent IBD acted in combination to produce the morphological patterns observed in common yew populations in the north-western part of the Balkan Peninsula. Finally, we suggested conservation measures to be implemented on a stand level, with habitat preservation as the main goal. In addition, ex situ conservation should be considered, both in the form of collections and urban planting, as both provide additional gene pool reserves.