scholarly journals Recombinant Diploid Saccharomyces cerevisiae Strain Development for Rapid Glucose and Xylose Co-Fermentation

Fermentation ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 59 ◽  
Author(s):  
Tingting Liu ◽  
Shuangcheng Huang ◽  
Anli Geng

Cost-effective production of cellulosic ethanol requires robust microorganisms for rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 xylose isomerase (PirXylA) and Orpinomyces sp. ukk1 xylose (OrpXylA) genes were constructed and transformed into S. cerevisiae. The strain harboring plasmids with tandem PirXylA was favorable for xylose utilization when xylose was used as the sole carbon source, while the strain harboring plasmids with tandem OrpXylA was beneficial for glucose and xylose cofermentation. PirXylA and OrpXylA genes were also individually integrated into the genome of yeast strains in multiple copies. Such integration was beneficial for xylose alcoholic fermentation. The respiration-deficient strain carrying episomal or integrated OrpXylA genes exhibited the best performance for glucose and xylose co-fermentation. This was partly attributed to the high expression levels and activities of xylose isomerase. Mating a respiration-efficient strain carrying the integrated PirXylA gene with a respiration-deficient strain harboring integrated OrpXylA generated a diploid recombinant xylose-fermenting yeast strain STXQ with enhanced cell growth and xylose fermentation. Co-fermentation of 162 g L−1 glucose and 95 g L−1 xylose generated 120.6 g L−1 ethanol in 23 h, with sugar conversion higher than 99%, ethanol yield of 0.47 g g−1, and ethanol productivity of 5.26 g L−1·h−1.

2012 ◽  
Vol 78 (16) ◽  
pp. 5708-5716 ◽  
Author(s):  
Sun-Mi Lee ◽  
Taylor Jellison ◽  
Hal S. Alper

ABSTRACTThe heterologous expression of a highly functional xylose isomerase pathway inSaccharomyces cerevisiaewould have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways inS. cerevisiaesuffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of thePiromycessp. xylose isomerase (encoded byxylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing agre3knockout andtal1andXKS1overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Timothy J. Tse ◽  
Daniel J. Wiens ◽  
Jianheng Shen ◽  
Aaron D. Beattie ◽  
Martin J. T. Reaney

As barley and oat production have recently increased in Canada, it has become prudent to investigate these cereal crops as potential feedstocks for alcoholic fermentation. Ethanol and other coproduct yields can vary substantially among fermented feedstocks, which currently consist primarily of wheat and corn. In this study, the liquified mash of milled grains from 28 barley (hulled and hull-less) and 12 oat cultivars were fermented with Saccharomyces cerevisiae to determine concentrations of fermentation products (ethanol, isopropanol, acetic acid, lactic acid, succinic acid, α-glycerylphosphorylcholine (α-GPC), and glycerol). On average, the fermentation of barley produced significantly higher amounts of ethanol, isopropanol, acetic acid, succinic acid, α-GPC, and glycerol than that of oats. The best performing barley cultivars were able to produce up to 78.48 g/L (CDC Clear) ethanol and 1.81 g/L α-GPC (CDC Cowboy). Furthermore, the presence of milled hulls did not impact ethanol yield amongst barley cultivars. Due to its superior ethanol yield compared to oats, barley is a suitable feedstock for ethanol production. In addition, the accumulation of α-GPC could add considerable value to the fermentation of these cereal crops.


Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Dimitrios Kontogiannatos ◽  
Vicky Troianou ◽  
Maria Dimopoulou ◽  
Polydefkis Hatzopoulos ◽  
Yorgos Kotseridis

Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanfei Zhang ◽  
Stephan Lane ◽  
Jhong-Min Chen ◽  
Sarah K. Hammer ◽  
Jake Luttinger ◽  
...  

Abstract Background Branched-chain higher alcohols (BCHAs), including isobutanol and 2-methyl-1-butanol, are promising advanced biofuels, superior to ethanol due to their higher energy density and better compatibility with existing gasoline infrastructure. Compartmentalizing the isobutanol biosynthetic pathway in yeast mitochondria is an effective way to produce BCHAs from glucose. However, to improve the sustainability of biofuel production, there is great interest in developing strains and processes to utilize lignocellulosic biomass, including its hemicellulose component, which is mostly composed of the pentose xylose. Results In this work, we rewired the xylose isomerase assimilation and mitochondrial isobutanol production pathways in the budding yeast Saccharomyces cerevisiae. We then increased the flux through these pathways by making gene deletions of BAT1, ALD6, and PHO13, to develop a strain (YZy197) that produces as much as 4 g/L of BCHAs (3.10 ± 0.18 g isobutanol/L and 0.91 ± 0.02 g 2-methyl-1-butanol/L) from xylose. This represents approximately a 28-fold improvement on the highest isobutanol titers obtained from xylose previously reported in yeast and the first report of 2-methyl-1-butanol produced from xylose. The yield of total BCHAs is 57.2 ± 5.2 mg/g xylose, corresponding to ~ 14% of the maximum theoretical yield. Respirometry experiments show that xylose increases mitochondrial activity by as much as 7.3-fold compared to glucose. Conclusions The enhanced levels of mitochondrial BCHA production achieved, even without disrupting ethanol byproduct formation, arise mostly from xylose activation of mitochondrial activity and are correlated with slow rates of sugar consumption.


2018 ◽  
Author(s):  
Daisuke Watanabe ◽  
Takuma Kajihara ◽  
Yukiko Sugimoto ◽  
Kenichi Takagi ◽  
Megumi Mizuno ◽  
...  

ABSTRACTSake yeast strain Kyokai no. 7 (K7) and its Saccharomyces cerevisiae relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase. Disruption of RIM15 in non-sake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced fermentation performance of sake yeast cells. In order to understand how Rim15p mediates fermentation control, we here focused on target-of-rapamycin protein kinase complex 1 (TORC1) and protein phosphatase 2A with the B55Δ regulatory subunit (PP2AB55δ), complexes that are known to act upstream and downstream of Rim15p, respectively. Several lines of evidence, including our previous transcriptomic analysis data, suggested enhanced TORC1 signaling in sake yeast cells during sake fermentation. Fermentation tests of the TORC1-related mutants using a laboratory strain revealed that TORC1 signaling positively regulates the initial fermentation rate in a Rim15p-dependent manner. Deletion of the CDC55 gene encoding B55δ abolished the high fermentation performance of Rim15p-deficient laboratory yeast and sake yeast cells, indicating that PP2AB55δ mediates the fermentation control by TORC1 and Rim15p. The TORC1-Greatwall-PP2AB55δ pathway similarly affected the fermentation rate in the fission yeast Schizosaccharomyces pombe, strongly suggested that the evolutionarily conserved pathway governs alcoholic fermentation in yeasts. It is likely that elevated PP2AB55δ activity accounts for the high fermentation performance of sake yeast cells. Heterozygous loss-of-function mutations in CDC55 found in K7-related sake strains may indicate that the Rim15p-deficient phenotypes are disadvantageous to cell survival.IMPORTANCEThe biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical characterization of fermentation by screening numerous mutants through laborious fermentation tests. To establish a rational and efficient breeding strategy, key regulators of alcoholic fermentation need to be identified. In the present study, we focused on how sake yeast strains of S. cerevisiae have acquired high alcoholic fermentation performance. Our findings provide a rational molecular basis to design yeast strains with optimal fermentation performance for production of alcoholic beverages and bioethanol. In addition, as the evolutionarily conserved TORC1-Greatwall-PP2AB55δ pathway plays a major role in the glycolytic control, our work may contribute to research on carbohydrate metabolism in higher eukaryotes.


Separations ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 67
Author(s):  
Fatma Bouaziz ◽  
Amal Ben Abdeddayem ◽  
Mohamed Koubaa ◽  
Francisco J. Barba ◽  
Khawla Ben Jeddou ◽  
...  

This study investigates the feasibility of producing ethanol from date palm seeds. The chemical compositions of three varieties of date seeds were first studied, showing mainly the presence of cellulose and hemicellulose. Ethanol was produced after a pre-treatment of date seeds using acid hydrolysis to extract the cellulosic fraction and to remove the lignin. Producing ethanol by fermentation was performed using the yeast Saccharomyces cerevisiae for 24 h, during which ethanol yield, biomass concentration, and total reducing sugars were recorded. The results obtained showed that the sugar content decreased over time, while ethanol production increased. Indeed, date seeds gave the highest ethanol concentration of 21.57 g/L after 6 h of alcoholic fermentation. These findings proved the feasibility of producing ethanol from date seeds.


2018 ◽  
Vol 85 (1) ◽  
Author(s):  
Daisuke Watanabe ◽  
Takuma Kajihara ◽  
Yukiko Sugimoto ◽  
Kenichi Takagi ◽  
Megumi Mizuno ◽  
...  

ABSTRACT Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 (K7) and its relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall family protein kinase. Disruption of RIM15 in nonsake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced fermentation performance of sake yeast cells. In order to understand how Rim15p mediates fermentation control, we here focused on target-of-rapamycin protein kinase complex 1 (TORC1) and protein phosphatase 2A with the B55δ regulatory subunit (PP2AB55δ), complexes that are known to act upstream and downstream of Rim15p, respectively. Several lines of evidence, including our previous transcriptomic analysis data, suggested enhanced TORC1 signaling in sake yeast cells during sake fermentation. Fermentation tests of the TORC1-related mutants using a laboratory strain revealed that TORC1 signaling positively regulates the initial fermentation rate in a Rim15p-dependent manner. Deletion of the CDC55 gene, encoding B55δ, abolished the high fermentation performance of Rim15p-deficient laboratory yeast and sake yeast cells, indicating that PP2AB55δ mediates the fermentation control by TORC1 and Rim15p. The TORC1-Greatwall-PP2AB55δ pathway similarly affected the fermentation rate in the fission yeast Schizosaccharomyces pombe, strongly suggesting that the evolutionarily conserved pathway governs alcoholic fermentation in yeasts. It is likely that elevated PP2AB55δ activity accounts for the high fermentation performance of sake yeast cells. Heterozygous loss-of-function mutations in CDC55 found in K7-related sake strains may indicate that the Rim15p-deficient phenotypes are disadvantageous to cell survival. IMPORTANCE The biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical characterization of fermentation by screening numerous mutants through laborious fermentation tests. To establish a rational and efficient breeding strategy, key regulators of alcoholic fermentation need to be identified. In the present study, we focused on how sake yeast strains of S. cerevisiae have acquired high alcoholic fermentation performance. Our findings provide a rational molecular basis to design yeast strains with optimal fermentation performance for production of alcoholic beverages and bioethanol. In addition, as the evolutionarily conserved TORC1-Greatwall-PP2AB55δ pathway plays a major role in the glycolytic control, our work may contribute to research on carbohydrate metabolism in higher eukaryotes.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Paula Bacelar Leite ◽  
Wanderson Mariano Machado ◽  
Alaíse Gil Guimarães ◽  
Giovani Brandão Mafra de Carvalho ◽  
Karina Teixeira Magalhães-Guedes ◽  
...  

This study aims to characterize the physicochemical properties of cocoa’s residual honey and evaluate its fermentative capacity as a substrate, using Saccharomyces cerevisiae AWRI726 as the starter culture for alcoholic fermentation. The research hypothesis was that cocoa’s residual honey can be used for the production of fermented beverages. Cocoa’s honey has 14.14 g.100 mL−1 of dry material, containing 11.80 g.100 mL−1 of carbohydrates and 1.20% crude protein, in addition to other minor components, such as pectin, lipids, and Fe, Mn, Na, and Zn, with a carbon-to-nitrogen (C/N) ratio (9.8) most suitable for fermentation. Fermentation at 20°C for 240 hours produced a liquid with 16% v/v ethanol (14 g.L−1 in 144 h). However, 24 hours of fermentation produced the maximum ethanol yield (0.373 g.g−1) and volumetric productivity (0.168 g.L−1.h−1), which were associated with a significant increase in the specific cell growth rate. Saccharomyces cerevisiae AWR1726 performed satisfactorily in the alcoholic fermentation of cocoa’s residual honey, similar to that observed in other fruit beverages, thus suggesting the suitability of cocoa’s residual honey for future commercial applications.


Sign in / Sign up

Export Citation Format

Share Document