scholarly journals Contribution of Grape Skins and Yeast Choice on the Aroma Profiles of Wines Produced from Pinot Noir and Synthetic Grape Musts

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 168
Author(s):  
Yifeng Qiao ◽  
Diana Hawkins ◽  
Katie Parish-Virtue ◽  
Bruno Fedrizzi ◽  
Sarah J. Knight ◽  
...  

The aroma profile is a key component of Pinot noir wine quality, and this is influenced by the diversity, quantity, and typicity of volatile compounds present. Volatile concentrations are largely determined by the grape itself and by microbial communities that produce volatiles during fermentation, either from grape-derived precursors or as byproducts of secondary metabolism. The relative degree of aroma production from grape skins compared to the juice itself, and the impact on different yeasts on this production, has not been investigated for Pinot noir. The influence of fermentation media (Pinot noir juice or synthetic grape must (SGM), with and without inclusion of grape skins) and yeast choice (commercial Saccharomyces cerevisiae EC1118, a single vineyard mixed community (MSPC), or uninoculated) on aroma chemistry was determined by measuring 39 volatiles in finished wines using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS). Fermentation medium clearly differentiated the volatile profile of wines with and without yeast, while differences between EC1118 and MSPC wines were only distinct for Pinot noir juice without skins. SGM with skins produced a similar aroma profile to Pinot noir with skins, suggesting that grape skins, and not the pulp, largely determine the aroma of Pinot noir wines.

Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Somchai Rice ◽  
Madina Tursumbayeva ◽  
Matthew Clark ◽  
David Greenlee ◽  
Murlidhar Dharmadhikari ◽  
...  

The Midwest wine industry has shown a marked increase in growers, hectares planted, wineries, and wine production. This growth coincides with the release of cold-hardy cultivars such as Brianna and Frontenac gris, in 2001 and 2003, respectively. These white grape varieties account for one-third of the total area grown in the state of Iowa. It is generally accepted that the wine aroma profile plays a crucial role in developing a local, sustainable brand. However, the identity of Brianna/Frontenac Gris-based wine aromas and their link to the grape berry chemistry at harvest is unknown. This study aims to preliminarily characterize key odor-active compounds that can influence the aroma profile in wines made from Brianna and Frontenac gris grapes harvested at different stages of ripening. Brianna and Frontenac gris grapes were harvested approximately 7 days apart, starting at 15.4 °Brix (3.09 pH) and 19.5 °Brix (3.00 pH), respectively. Small batch fermentations were made for each time point with all juices adjusted to the same °Brix prior to fermentation. Odor-active compounds were extracted from wine headspace using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) and simultaneous olfactometry (O). Over 30 odor-active compounds were detected. Aromas in Brianna wines developed from “cotton candy” and “floral”, to “banana” and “butterscotch”, then finally to “honey”, “caramel” and an unknown neutral aroma. Frontenac gris wines changed from an unknown neutral aroma to “fruity” and “rose”. Results from the lay audiences’ flavor and aroma descriptors also indicate a shift with harvest date and associated °Brix. To date, this is the first report of wine aromas from Brianna and Frontenac gris by GC-MS-O. Findings from this research support the hypothesis that aroma profiles of Brianna and Frontenac gris wines can be influenced by harvesting the grapes at different stages of ripening.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1142
Author(s):  
Rocco Longo ◽  
Wes Pearson ◽  
Angela Merry ◽  
Mark Solomon ◽  
Luca Nicolotti ◽  
...  

The aim of this preliminary study was to identify potential colour components, volatile and sensory attributes that could discriminate Pinot noir wines from five Australian winegrowing regions (Adelaide Hills, Yarra Valley, Mornington Peninsula, Northern and Southern Tasmania). The sensory analysis consisted of the Pivot© Profile method that was performed by wine professionals. A headspace solid-phase microextraction-gas chromatography-mass spectrometry method was used to quantify multiple volatile compounds, while the Modified Somers method was used for colour characterisation. Analysis of data suggested ethyl decanoate, ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, in addition to decanoic acid as important contributors to the discrimination between regions. Similarly, wine hue, chemical age indices, total anthocyanin, and (%) non-bleachable pigment also discriminated wines between regions. The sensory analysis showed that wines from Mornington Peninsula were associated with the ‘red fruits’ aroma, ‘acidic’, and ‘astringency’ palate descriptors, while those from Adelaide Hills were associated with the ‘brown’ colour attribute. This study indicates regionality is a strong driver of aroma typicity of wine.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hung Li Wang ◽  
Helene Hopfer ◽  
Darrell W. Cockburn ◽  
Josephine Wee

Microbial diversity present on grapes in wineries, and throughout fermentation has been associated with important metabolites for final wine quality. Although microbiome-metabolome associations have been well characterized and could be used as indicators of wine quality, the impact of regionality on the microbiome and metabolome is not well known. Additionally, studies between microbiome and metabolome have been conducted on single species grape such as Vitis vinifera instead of other species and interspecific hybrids. Although the Pennsylvania wine industry is relatively young compared to California, the industry has been experiencing rapid growth over the past decade and is expected to continue to grow in the future. Pennsylvania’s climate of cold winters and high levels of rainfall throughout the growing season favors cultivation of interspecific hybrid grapes such as Vitis ssp. Chambourcin, one of the most commonly grown hybrid varieties in the state. Chambourcin is a prime candidate for studying the impact of regionality on microbiome-metabolome interactions as interspecific hybrid varieties could shape the future of winemaking. Here, we identify for the first time the regional distribution of microbial communities and their interactions with volatile metabolome during fermentation (0–20 days) by integrating high throughput Illumina sequencing (16S and ITS) and headspace-solid phase microextraction-gas chromatography-mass spectrometry. Analyzing 88 samples from nine wineries in the Central and East Pennsylvania regions, we observed high microbial diversity during early stages of fermentation (1–4 days) where non-Saccharomyces yeasts such as Starmerella and Aureobasidium and non-Oenococcus bacteria, Sphingomonas, likely contribute to microbial terroir to the resulting wines. Furthermore, key differentiators between two regions in Pennsylvania, as identified by LEfSe analysis, include the fungal genera Cladosporium and Kazachstania and the bacterial genera Lactococcus and Microbacterium. Moreover, 29 volatile fermentation metabolites were discriminated significantly (variable importance in projection > 1) between the two regions as shown by Partial Least Squares-Discriminant Analysis. Finally, Spearman’s correlation identified regional differences of microbial-metabolite associations throughout fermentation that could be used for targeted microbiome manipulation to improve wine quality and preserve regionality. In summary, these results demonstrate the microbial signatures during fermentation and differential microorganisms and metabolites further support impact of regionality on Chambourcin wines in Pennsylvania.


Sign in / Sign up

Export Citation Format

Share Document