The U.S. national parks have experienced significant climate-change impacts and rapid, on-going changes are expected to continue. Despite the significant climate-change vulnerabilities facing parks, relatively few parks have conducted comprehensive climate-change vulnerability assessments, defined as assessments that synthesize vulnerability information from a wide range of sources, identify key climate-change impacts, and prioritize vulnerable park resources (Michalak et al. In review). In recognition that funding and planning capacity is limited, this project was initiated to identify geographies, parks, and issues that are high priorities for conducting climate-change vulnerability assessments (CCVA) and strategies to efficiently address the need for CCVAs across all U.S. National Park Service (NPS) park units (hereafter “parks”) and all resources. To help identify priority geographies and issues, we quantitatively assessed the relative magnitude of vulnerability factors potentially affecting park resources and values. We identified multiple vulnerability factors (e.g., temperature change, wildfire potential, number of at-risk species, etc.) and sought existing datasets that could be developed into indicators of these factors. To be included in the study, datasets had to be spatially explicit or already summarized for individual parks and provide consistent data for at least all parks within the contiguous U.S. (CONUS). The need for consistent data across such a large geographic extent limited the number of datasets that could be included, excluded some important drivers of climate-change vulnerability, and prevented adequate evaluation of some geographies. The lack of adequately-scaled data for many key vulnerability factors, such as freshwater flooding risks and increased storm activity, highlights the need for both data development and more detailed vulnerability assessments at local to regional scales where data for these factors may be available. In addition, most of the available data at this scale were related to climate-change exposures, with relatively little data available for factors associated with climate-change sensitivity or adaptive capacity. In particular, we lacked consistent data on the distribution or abundance of cultural resources or accessible data on infrastructure across all parks. We identified resource types, geographies, and critical vulnerability factors that lacked data for NPS’ consideration in addressing data gaps. Forty-seven indicators met our criteria, and these were combined into 21 climate-change vulnerability factors. Twenty-seven indicators representing 12 vulnerability factors addressed climate-change exposure (i.e., projected changes in climate conditions and impacts). A smaller number of indictors measured sensitivity (12 indicators representing 5 vulnerability factors). The sensitivity indicators often measured park or landscape characteristics which may make resources more or less responsive to climate changes (e.g., current air quality) as opposed to directly representing the sensitivity of specific resources within the park (e.g., a particular rare species or type of historical structure). Finally, 6 indicators representing 4 vulnerability factors measured external adaptive capacity for living resources (i.e., characteristics of the park and/or surrounding landscape which may facilitate or impede species adaptation to climate changes). We identified indicators relevant to three resource groups: terrestrial living, aquatic living (including living cultural resources such as culturally significant landscapes, plant, or animal species) and non-living resources (including infrastructure and non-living cultural resources such as historic buildings or archeological sites). We created separate indicator lists for each of these resource groups and analyzed them separately. To identify priority geographies within CONUS,...