scholarly journals Mass Ratio and Spot Parameter Estimation from Eclipsing Binary Star Light Curves

Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Dirk Terrell

Eclipsing binary stars have a rich history of contributing to the field of stellar astrophysics. Most of the available information on the fundamental properties of stars has come from the analysis of observations of binaries. The availability of powerful computers and sophisticated codes that apply physical models has resulted in determinations of masses and radii of sufficient accuracy to provide critical tests of theories of stellar structure and evolution. Despite their sophistication, these codes still require the guiding hand of trained scientists to extract reliable information. The computer code will produce results, but it is still imperative for the analyst to ensure that those results make astrophysical sense, and to ascertain their reliability. Care must be taken to ensure that we are asking the codes for parameters for which there is information in the data. The analysis of synthetic observations with simulated observational errors of typical size can provide valuable insight to the analysis process because the parameters used to generate the observations are known. Such observations are herein analyzed to guide the process of determining mass ratios and spot parameters from eclipsing binary light curves. The goal of this paper is to illustrate some of the subtleties that need to be recognized and treated properly when analyzing binary star data.

2020 ◽  
Vol 498 (3) ◽  
pp. 4356-4364
Author(s):  
A K Getley ◽  
B Carter ◽  
R King ◽  
S O’Toole

ABSTRACT In this study, we identify 11 Kepler systems (KIC 5255552, 5653126, 5731312, 7670617, 7821010, 8023317, 10268809, 10296163, 11519226, 11558882, and 12356914) with a flip-flop effect in the eclipse timing variations O − C diagrams of the systems, report on what these systems have in common and whether these systems are dynamically stable. These systems have previously reported high eccentric binary stars with highly eccentric third bodies/outer companions. We find that all of the additional bodies in the system are dynamically stable for the configurations previously reported and are therefore likely to exist as described. We also provide additional evidence of KIC 5255552 being a quadruple star system composed of an eclipsing binary pair and non-eclipsing binary pair with the possibility of a fifth body in the system. With the advent of the NASA’s Transiting Exoplanet Survey Satellite (TESS) exoplanet survey, its precision photometric monitoring offers an opportunity to help confirm more local eclipsing binary star companions, including planets.


2011 ◽  
Vol 7 (S282) ◽  
pp. 271-278 ◽  
Author(s):  
A. Prša ◽  
E. F. Guinan ◽  
E. J. Devinney ◽  
P. Degroote ◽  
S. Bloemen ◽  
...  

AbstractWith the launch of NASA's Kepler mission, stellar astrophysics in general, and the eclipsing binary star field in particular, has witnessed a surge in data quality, interpretation possibilities, and the ability to confront theoretical predictions with observations. The unprecedented data accuracy and an essentially uninterrupted observing mode of over 2000 eclipsing binaries is revolutionizing the field. Amidst all this excitement, we came to realize that our best models to describe the physical and geometric properties of binaries are not good enough. Systematic errors are evident in a large range of binary light curves, and the residuals are anything but Gaussian. This is crucial because it limits us in the precision of the attained parameters. Since eclipsing binary stars are prime targets for determining the fundamental properties of stars, including their ages and distances, the penalty for this loss of accuracy affects other areas of astrophysics as well. Here, we propose to substantially revamp our current models by applying the lessons learned while reducing, modeling, and analyzing Kepler data.


1992 ◽  
Vol 135 ◽  
pp. 152-154
Author(s):  
Claud H. Lacy

New observational spectroscopic methods have made it possible to obtain radial velocities of eclipsing binary star components with unprecedented accuracy. Most of the improvement in accuracy is due to two techniques: (1) The use of optical fibers to scramble the spatial distribution of stellar brightness at the input end of the spectrometer, and to allow the spectrometer to be located off the telescope where its temperature and position can be stabilized. (2) The simultaneous exposure of the comparison emission-tube light through a separate fiber or pair of fibers adjacent to the stellar fiber continuously during the stellar exposure. Any changes in the response of the spectrometer during the exposure then affect the stellar and adjacent comparison spectra in almost exactly the same way.


2005 ◽  
Vol 130 (6) ◽  
pp. 2838-2846 ◽  
Author(s):  
Claud H. Sandberg Lacy ◽  
Guillermo Torres ◽  
Antonio Claret ◽  
Luiz Paulo Ribeiro Vaz

2018 ◽  
Vol 616 ◽  
pp. A38 ◽  
Author(s):  
P. F. L. Maxted ◽  
R. J. Hutcheon

Context. The Kepler K2 mission now makes it possible to find and study a wider variety of eclipsing binary stars than has been possible to-date, particularly long-period systems with narrow eclipses. Aims. Our aim is to characterise eclipsing binary stars observed by the Kepler K2 mission with orbital periods longer than P ≈ 5.5 days. Methods. The ellc binary star model has been used to determine the geometry of eclipsing binary systems in Kepler K2 campaigns 1, 2 and 3. The nature of the stars in each binary is estimated by comparison to stellar evolution tracks in the effective temperature – mean stellar density plane. Results. 43 eclipsing binary systems have been identified and 40 of these are characterised in some detail. The majority of these systems are found to be late-type dwarf and sub-giant stars with masses in the range 0.6–1.4 solar masses. We identify two eclipsing binaries containing red giant stars, including one bright system with total eclipses that is ideal for detailed follow-up observations. The bright B3V-type star HD 142883 is found to be an eclipsing binary in a triple star system. We observe a series of frequencies at large multiples of the orbital frequency in BW Aqr that we tentatively identify as tidally induced pulsations in this well-studied eccentric binary system. We find that the faint eclipsing binary EPIC 201160323 shows rapid apsidal motion. Rotational modulation signals are observed in 13 eclipsing systems, the majority of which are found to rotate non-synchronously with their orbits. Conclusions. The K2 mission is a rich source of data that can be used to find long period eclipsing binary stars. These data combined with follow-up observations can be used to precisely measure the masses and radii of stars for which such fundamental data are currently lacking, e.g., sub-giant stars and slowly-rotating low-mass stars.


2002 ◽  
Vol 123 (2) ◽  
pp. 1013-1022 ◽  
Author(s):  
Claud H. Sandberg Lacy ◽  
Guillermo Torres ◽  
Antonio Claret ◽  
Jeffrey A. Sabby

Sign in / Sign up

Export Citation Format

Share Document