scholarly journals The Roles of Hypoxia-Inducible Factors and Non-Coding RNAs in Gastrointestinal Cancer

Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1008 ◽  
Author(s):  
Hyun-Soo Cho ◽  
Tae-Su Han ◽  
Keun Hur ◽  
Hyun Seung Ban

Hypoxia-inducible factors (HIFs) are transcription factors that play central roles in cellular responses against hypoxia. In most cancers, HIFs are closely associated with tumorigenesis by regulating cell survival, angiogenesis, metastasis, and adaptation to the hypoxic tumor microenvironment. Recently, non-coding RNAs (ncRNAs) have been reported to play critical roles in the hypoxic response in various cancers. Here, we review the roles of hypoxia-response ncRNAs in gastrointestinal cancer, with a particular focus on microRNAs and long ncRNAs, and discuss the functional relationships and regulatory mechanisms between HIFs and ncRNAs.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyu Wang ◽  
Youngjin Han ◽  
Hyun A Jo ◽  
Juwon Lee ◽  
Yong Sang Song

Author(s):  
Laura D'Ignazio ◽  
Dilem Shakir ◽  
Michael Batie ◽  
H. Arno Muller ◽  
Sonia Rocha

NF-B signalling is crucial for cellular responses to inflammation but has also been associated with the hypoxia response. NF-B and HIF transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1beta modulates NF-kappaB transcriptional response, very little is understood regarding how HIF-1beta contributes to NF-kappaB signalling. Here, we demonstrate that HIF-1beta is required for full NF-kappaB activation in cells following canonical and non-canonical stimuli. We found that HIF-1beta specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1beta binds to the TRAF6 gene and controls its expression independently of HIF-1alpha. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1beta. These results indicate that HIF-1beta is an important regulator of NF-kappaB with consequences for homeostasis and human disease.


2020 ◽  
Vol 21 (8) ◽  
pp. 3000
Author(s):  
Laura D’Ignazio ◽  
Dilem Shakir ◽  
Michael Batie ◽  
H. Arno Muller ◽  
Sonia Rocha

NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1β contributes to NF-κB signalling. Here, we demonstrate that HIF-1β is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1β specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1β binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1β. These results indicate that HIF-1β is an important regulator of NF-κB with consequences for homeostasis and human disease.


Author(s):  
Jiansheng Liu ◽  
Xueqin Qing ◽  
Qin Zhang ◽  
Ningyue Yu ◽  
Mengbin Ding ◽  
...  

Photodynamic therapy (PDT) has provided a promising approach for treatment of solid tumors, while the therapeutic efficacy is often limited due to hypoxic tumor microenvironment, resulting in tumor metastasis. We...


Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


2014 ◽  
Vol 7 (3) ◽  
pp. 153-160 ◽  
Author(s):  
Muhammad Zaeem Noman ◽  
Yosra Messai ◽  
Jane Muret ◽  
Meriem Hasmim ◽  
Salem Chouaib

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guangzhong Xu ◽  
Kai Li ◽  
Nengwei Zhang ◽  
Bin Zhu ◽  
Guosheng Feng

Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer.Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed.Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer.Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.


Author(s):  
Varun Sasidharan Nair ◽  
Reem Saleh ◽  
Salman M. Toor ◽  
Farhan S. Cyprian ◽  
Eyad Elkord

2021 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Siyuan Luan ◽  
Yushang Yang ◽  
Shouyue Zhang ◽  
Xiaoxi Zeng ◽  
Xin Xiao ◽  
...  

Abstract   Long non-coding RNAs (lncRNAs), a type of transcriptional products with more than 200 nucleotides in length, have been less characterized compared to protein-coding RNAs so far. However, it is increasingly evident that lncRNAs are key players involved in multiple genetic and epigenetic activities during the carcinogenesis of neoplastic diseases. Currently, accumulating data have pointed out the close connection between lncRNAs and esophageal carcinoma (EC), shedding light on further unravelling the complexity of lncRNAs and EC. Methods In this review, we thoroughly collect the evidence regarding original studies on EC-related lncRNAs by searching in MEDLINE/PubMed, Embase and WOS/SCI. We especially focus on summarizing EC-related lncRNAs based upon more updated evidence, and further discuss their different features from various perspectives, including regulatory mechanisms, functional roles in cancer hallmarks, as well as potential diagnostic and therapeutic applications, which would together reveal the complexity of lncRNAs and EC for potential clinical applications. Results We discuss over thirty EC-related lncRNAs in total, most of which function as oncogenes that promote cancer development, while the others function as tumor suppressors. Regulatory mechanisms included sponging miRNAs, direct interaction with proteins, and exosome visicle-based intercellular communication. Based upon these modes of actions, lncRNAs play multiple roles in cancer hallmarks such as uncontrolled cell growth, evasion of programmed cell death, invasion and metastasis. Moreover, lncRNAs packaged in exosomes have unique potency to serve as diagnostic biomarkers; some lncRNAs show great potential to predict patients' chemical resistance and may be crucial targets to improve chemoradiotherapy and targeted therapy. Conclusion Over the past few years, the research of EC-related lncRNAs maintain obviously rapid development, yet further exploration of exact mechanisms and clinical applications that lncRNAs can offer need to be done. Indeed, LncRNAs hold the promise of being applied in multiple clinical scenarios, especially early diagnosis of EC, improvement of sensitivity to chemotherapy/radiotherapy, and development of small-molecule targeted drugs.


Sign in / Sign up

Export Citation Format

Share Document