scholarly journals You Had Me at “MAGIC”!: Four Barley MAGIC Populations Reveal Novel Resistance QTL for Powdery Mildew

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1512
Author(s):  
Fluturë Novakazi ◽  
Lene Krusell ◽  
Jens Jensen ◽  
Jihad Orabi ◽  
Ahmed Jahoor ◽  
...  

Blumeria graminis f. sp. hordei (Bgh), the causal agent of barley powdery mildew (PM), is one of the most important barley leaf diseases and is prevalent in most barley growing regions. Infection decreases grain quality and yields on average by 30%. Multi-parent advanced generation inter-cross (MAGIC) populations combine the advantages of bi-parental and association panels and offer the opportunity to incorporate exotic alleles into adapted material. Here, four barley MAGIC populations consisting of six to eight founders were tested for PM resistance in field trials in Denmark. Principle component and STRUCTURE analysis showed the populations were unstructured and genome-wide linkage disequilibrium (LD) decay varied between 14 and 38 Mbp. Genome-wide association studies (GWAS) identified 11 regions associated with PM resistance located on chromosomes 1H, 2H, 3H, 4H, 5H and 7H, of which three regions are putatively novel resistance quantitative trait locus/loci (QTL). For all regions high-confidence candidate genes were identified that are predicted to be involved in pathogen defense. Haplotype analysis of the significant SNPs revealed new allele combinations not present in the founders and associated with high resistance levels.

Author(s):  
Juho Hautsalo ◽  
Fluturë Novakazi ◽  
Marja Jalli ◽  
Magnus Göransson ◽  
Outi Manninen ◽  
...  

AbstractGenome-Wide Association Studies (GWAS) of four Multi-parent Advanced Generation Inter-Cross (MAGIC) populations identified nine regions on chromosomes 1H, 3H, 4H, 5H, 6H and 7H associated with resistance against barley scald disease. Three of these regions are putatively novel resistance Quantitative Trait Loci (QTL). Barley scald is caused by Rhynchosporium commune, one of the most important barley leaf diseases that are prevalent in most barley-growing regions. Up to 40% yield losses can occur in susceptible barley cultivars. Four MAGIC populations were generated in a Nordic Public–Private Pre-breeding of spring barley project (PPP Barley) to introduce resistance to several important diseases. Here, these MAGIC populations consisting of six to eight founders each were tested for scald resistance in field trials in Finland and Iceland. Eight different model covariate combinations were compared for GWAS studies, and the models that deviated the least from the expected p-values were selected. For all QTL, candidate genes were identified that are predicted to be involved in pathogen defence. The MAGIC progenies contained new haplotypes of significant SNP-markers with high resistance levels. The lines with successfully pyramided resistance against scald and mildew and the significant markers are now distributed among Nordic plant breeders and will benefit development of disease-resistant cultivars.


2015 ◽  
Author(s):  
Dominic Holland ◽  
Yunpeng Wang ◽  
Wesley K Thompson ◽  
Andrew Schork ◽  
Chi-Hua Chen ◽  
...  

Genome-wide Association Studies (GWAS) result in millions of summary statistics (``z-scores'') for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities that does not require raw genotype data, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype -- the proportion of SNPs (after uniform pruning, so that large LD blocks are not over-represented) likely to be in strong LD with causal/mechanistically associated SNPs -- and predicting the proportion of chip heritability explainable by genome wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N=82,315) and additionally, for purposes of illustration, putamen volume (N=12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We estimate the degree to which effect sizes are over-estimated when based on linear regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 106and 105. The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures.


2020 ◽  
Author(s):  
Mike A. Nalls ◽  
Cornelis Blauwendraat ◽  
Lana Sargent ◽  
Dan Vitale ◽  
Hampton Leonard ◽  
...  

SUMMARYBackgroundPrevious research using genome wide association studies (GWAS) has identified variants that may contribute to lifetime risk of multiple neurodegenerative diseases. However, whether there are common mechanisms that link neurodegenerative diseases is uncertain. Here, we focus on one gene, GRN, encoding progranulin, and the potential mechanistic interplay between genetic risk, gene expression in the brain and inflammation across multiple common neurodegenerative diseases.MethodsWe utilized GWAS, expression quantitative trait locus (eQTL) mapping and Bayesian colocalization analyses to evaluate potential causal and mechanistic inferences. We integrate various molecular data types from public resources to infer disease connectivity and shared mechanisms using a data driven process.FindingseQTL analyses combined with GWAS identified significant functional associations between increasing genetic risk in the GRN region and decreased expression of the gene in Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis. Additionally, colocalization analyses show a connection between blood based inflammatory biomarkers relating to platelets and GRN expression in the frontal cortex.InterpretationGRN expression mediates neuroinflammation function related to general neurodegeneration. This analysis suggests shared mechanisms for Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis.FundingNational Institute on Aging, National Institute of Neurological Disorders and Stroke, and the Michael J. Fox Foundation.


2019 ◽  
Vol 35 (21) ◽  
pp. 4327-4335
Author(s):  
Meiyue Wang ◽  
Shizhong Xu

AbstractMotivationGenomic scanning approaches that detect one locus at a time are subject to many problems in genome-wide association studies and quantitative trait locus mapping. The problems include large matrix inversion, over-conservativeness for tests after Bonferroni correction and difficulty in evaluation of the total genetic contribution to a trait’s variance. Targeting these problems, we take a further step and investigate a multiple locus model that detects all markers simultaneously in a single model.ResultsWe developed a sparse Bayesian learning (SBL) method for quantitative trait locus mapping and genome-wide association studies. This new method adopts a coordinate descent algorithm to estimate parameters (marker effects) by updating one parameter at a time conditional on current values of all other parameters. It uses an L2 type of penalty that allows the method to handle extremely large sample sizes (>100 000). Simulation studies show that SBL often has higher statistical powers and the simulated true loci are often detected with extremely small P-values, indicating that SBL is insensitive to stringent thresholds in significance testing.Availability and implementationAn R package (sbl) is available on the comprehensive R archive network (CRAN) and https://github.com/MeiyueComputBio/sbl/tree/master/R%20packge.Supplementary informationSupplementary data are available at Bioinformatics online.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2211
Author(s):  
Shan Lin ◽  
Zihui Wan ◽  
Junnan Zhang ◽  
Lingna Xu ◽  
Bo Han ◽  
...  

Albumin can be of particular benefit in fighting infections for newborn calves due to its anti-inflammatory and anti-oxidative stress properties. To identify the candidate genes related to the concentration of albumin in colostrum and serum, we collected the colostrum and blood samples from 572 Chinese Holstein cows within 24 h after calving and measured the concentration of albumin in the colostrum and serum using the ELISA methods. The cows were genotyped with GeneSeek 150 K chips (containing 140,668 single nucleotide polymorphisms; SNPs). After quality control, we performed GWASs via GCTA software with 91,620 SNPs and 563 cows. Consequently, 9 and 7 genome-wide significant SNPs (false discovery rate (FDR) at 1%) were identified. Correspondingly, 42 and 206 functional genes that contained or were approximate to (±1 Mbp) the significant SNPs were acquired. Integrating the biological process of these genes and the reported QTLs for immune and inflammation traits in cattle, 3 and 12 genes were identified as candidates for the concentration of colostrum and serum albumin, respectively; these are RUNX1, CBR1, OTULIN,CDK6, SHARPIN, CYC1, EXOSC4, PARP10, NRBP2, GFUS, PYCR3, EEF1D, GSDMD, PYCR2 and CXCL12. Our findings provide important information for revealing the genetic mechanism behind albumin concentration and for molecular breeding of disease-resistance traits in dairy cattle.


Author(s):  
Daniel B. Rosoff ◽  
Toni-Kim Clarke ◽  
Mark J. Adams ◽  
Andrew M. McIntosh ◽  
George Davey Smith ◽  
...  

Abstract Observational studies suggest that lower educational attainment (EA) may be associated with risky alcohol use behaviors; however, these findings may be biased by confounding and reverse causality. We performed two-sample Mendelian randomization (MR) using summary statistics from recent genome-wide association studies (GWAS) with >780,000 participants to assess the causal effects of EA on alcohol use behaviors and alcohol dependence (AD). Fifty-three independent genome-wide significant SNPs previously associated with EA were tested for association with alcohol use behaviors. We show that while genetic instruments associated with increased EA are not associated with total amount of weekly drinks, they are associated with reduced frequency of binge drinking ≥6 drinks (ßIVW = −0.198, 95% CI, −0.297 to –0.099, PIVW = 9.14 × 10−5), reduced total drinks consumed per drinking day (ßIVW = −0.207, 95% CI, −0.293 to –0.120, PIVW = 2.87 × 10−6), as well as lower weekly distilled spirits intake (ßIVW = −0.148, 95% CI, −0.188 to –0.107, PIVW = 6.24 × 10−13). Conversely, genetic instruments for increased EA were associated with increased alcohol intake frequency (ßIVW = 0.331, 95% CI, 0.267–0.396, PIVW = 4.62 × 10−24), and increased weekly white wine (ßIVW = 0.199, 95% CI, 0.159–0.238, PIVW = 7.96 × 10−23) and red wine intake (ßIVW = 0.204, 95% CI, 0.161–0.248, PIVW = 6.67 × 10−20). Genetic instruments associated with increased EA reduced AD risk: an additional 3.61 years schooling reduced the risk by ~50% (ORIVW = 0.508, 95% CI, 0.315–0.819, PIVW = 5.52 × 10−3). Consistency of results across complementary MR methods accommodating different assumptions about genetic pleiotropy strengthened causal inference. Our findings suggest EA may have important effects on alcohol consumption patterns and may provide potential mechanisms explaining reported associations between EA and adverse health outcomes.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Xinghua Shi ◽  
Saranya Radhakrishnan ◽  
Jia Wen ◽  
Jin Yun Chen ◽  
Junjie Chen ◽  
...  

Abstract Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long-range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation together with methylation may affect cellular phenotype.


2020 ◽  
Author(s):  
Ali Jalil Sarghale ◽  
Mohammad Moradi Shahrebabak ◽  
Hossein Moradi Shahrebabak ◽  
Ardeshir Nejati Javaremi ◽  
Mahdi Saatchi ◽  
...  

Abstract Background: Methane emission by ruminants has contributed considerably to the global warming and understanding the genomic architecture of methane production may help the livestock producers to reduce the methane emission from the livestock production system. The goal of our study was to identify genomic regions affecting the predicted methane emission (PME) from volatile fatty acids (VFAs) indicators and VFA traits using imputed whole-genome sequence data in Iranian Holstein cattle. Results: Based on the significant-association threshold (p < 5 × 10−8), 33 single nucleotide polymorphisms (SNPs) were detected for PME per kg milk (n=2), PME per kg fat (n=14), and valeric acid (n=17). Besides, 69 genes were identified for valeric acid (n=18), PME per kg milk (n=4) and PME per kg fat (n=47) that were located within 1 Mb of significant SNPs. Based on the gene ontology (GO) term analysis, six promising candidate genes were significantly clustered in organelle organization (GO:0004984, p = 3.9 × 10-2) for valeric acid, and 17 candidate genes significantly clustered in olfactory receptors activity (GO:0004984, p = 4 × 10-10) for PME traits. Annotation results revealed 31 quantitative trait loci (QTLs) for milk yield and its components, body weight, and residual feed intake within 1 Mb of significant SNPs. Conclusions: Our results identified 33 SNPs associated with PME and valeric acid traits, as well as 17 olfactory receptors activity genes for PME traits related to food preference and feed intake. Identified SNPs in this study were close to 31 QTLs for milk yield and its components, body weight, and residual feed intake traits. In addition, these traits had high correlations with PME trait. Overall, our findings suggest that marker-assisted and genomic selection could be used to improve the difficult and expensive-to-measure phenotypes such as PME. Moreover, prediction of methane emission by VFA indicators could be useful for increasing the size of the reference population required in genome-wide association studies and genomic selection.


Sign in / Sign up

Export Citation Format

Share Document