scholarly journals Overexpression of SgGH3.1 from Fine-Stem Stylo (Stylosanthes guianensis var. intermedia) Enhances Chilling and Cold Tolerance in Arabidopsis thaliana

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1367
Author(s):  
Ming Jiang ◽  
Long-Long Ma ◽  
Huai-An Huang ◽  
Shan-Wen Ke ◽  
Chun-Sheng Gui ◽  
...  

Stylosanthes (stylo) species are commercially significant tropical and subtropical forage and pasture legumes that are vulnerable to chilling and frost. However, little is known about the molecular mechanisms behind stylos’ responses to low temperature stress. Gretchen-Hagen 3 (GH3) proteins have been extensively investigated in many plant species for their roles in auxin homeostasis and abiotic stress responses, but none have been reported in stylos. SgGH3.1, a cold-responsive gene identified in a whole transcriptome profiling study of fine-stem stylo (S. guianensis var. intermedia) was further investigated for its involvement in cold stress tolerance. SgGH3.1 shared a high percentage of identity with 14 leguminous GH3 proteins, ranging from 79% to 93%. Phylogenetic analysis classified SgGH3.1 into Group Ⅱ of GH3 family, which have been proven to involve with auxins conjugation. Expression profiling revealed that SgGH3.1 responded rapidly to cold stress in stylo leaves. Overexpression of SgGH3.1 in Arabidopsis thaliana altered sensitivity to exogenous IAA, up-regulated transcription of AtCBF1-3 genes, activated physiological responses against cold stress, and enhanced chilling and cold tolerances. This is the first report of a GH3 gene in stylos, which not only validated its function in IAA homeostasis and cold responses, but also gave insight into breeding of cold-tolerant stylos.

2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.


2020 ◽  
Author(s):  
Leonor Ramirez ◽  
Facundo Luna ◽  
Claudio Andoni Mucci ◽  
Lorenzo Lamattina

ABSTRACTIn temperate climates, low ambient temperatures in late winter and in spring can result in cold stress conditions in brood areas of weakened honey bee colonies, leading to increased levels of developmental interruptions and death of the brood. Very little is known about the physiological and molecular mechanisms that regulate honey bee brood responses to acute cold-stress. Here, we hypothesized that central regulatory pathways mediated by insulin/insulin-like peptide signalling (IIS) and adipokinetic hormone (AKH) are linked to metabolic changes in cold-stressed honey bee brood. A. mellifera brood reared at suboptimal temperatures showed diminished growth rate and arrested development progress. Notably, cold-stressed brood rapidly recovers the growth in the first 24 h after returning at control rearing temperature, sustained by the induction of compensatory mechanisms. We determined fast changes in the expression of components of IIS and AKH pathways in cold-stressed brood supporting their participation in metabolic events, growth and stress responses. We also showed that metabolic rate keeps high in brood exposed to stress suggesting a role in energy supply for growth and cell repair. Additionally, transcript levels of the uncoupling protein MUP2 were elevated in cold-stressed brood, suggesting a role for heat generation through mitochondrial decoupling mechanisms and/or ROS attenuation. Physiological, metabolic and molecular mechanisms that shape the responses to cold-stress in honey bee brood are addressed and discussed.


2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Xiao-Rong Zhou ◽  
Yan-Min Shan ◽  
Yao Tan ◽  
Zhuo-Ran Zhang ◽  
Bao-Ping Pang

Abstract Galeruca daurica (Joannis) has become a new insect pest in the Inner Mongolia grasslands since 2009, and its larvae and eggs have strong cold tolerance. To get a deeper insight into its molecular mechanisms of cold stress responses, we performed de novo transcriptome assembly for G. daurica by RNA-Seq and compared the transcriptomes of its larvae exposed to five different temperature treatments (−10, −5, 0, 5, and 25°C for 1 h and then recovered at 25°C for 1 h), respectively. Compared with the control (25°C), the numbers of differentially expressed genes (DEGs) decreased from 1,821 to 882, with the temperature declining from 5 to −10°C. Moreover, we obtained 323 coregulated DEGs under different low temperatures. Under four low temperatures (−10, −5, 0, and 5°C), a large number of genes were commonly upregulated during recovery from cold stresses, including those related to cuticle protein, followed by cytochrome P450, clock protein, fatty acid synthase, and fatty acyl-CoA reductase; meanwhile, lots of genes encoding cuticle protein, RNA replication protein, RNA-directed DNA polymerase, and glucose dehydrogenase were commonly downregulated. Our findings provide important clues for further investigations of key genes and molecular mechanisms involved in the adaptation of G. daurica to harsh environments.


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Nahuel González-Schain ◽  
Irma Roig-Villanova ◽  
Martin M. Kater

Abstract Background Rice grain production is susceptible to a changing environment that imposes both biotic and abiotic stress conditions. Cold episodes are becoming more frequent in the last years and directly affect rice yield in areas with a temperate climate. Rice is particularly susceptible to cold stress during the reproductive phase, especially in anthers during post-meiotic stages which, in turn, affect pollen production. However, a number of rice cultivars with a certain degree of tolerance to cold have been described, which may represent a good breeding resource for improvement of susceptible commercial varieties. Plants experiencing cold stress activate a molecular response in order to reprogram many metabolic pathways to face these hostile conditions. Results Here we performed RNA-seq analysis using cold-stressed post-meiotic anther samples from a cold-tolerant, Erythroceros Hokkaido (ERY), and a cold-susceptible commercial cultivar Sant’Andrea (S.AND). Both cultivars displayed an early common molecular response to cold, although the changes in expression levels are much more drastic in the tolerant one. Comparing our datasets, obtained after one-night cold stress, with other similar genome-wide studies showed very few common deregulated genes, suggesting that molecular responses in cold-stressed anthers strongly depend on conditions and the duration of the cold treatments. Cold-tolerant ERY exhibits specific molecular responses related to ethylene metabolism, which appears to be activated after cold stress. On the other hand, S.AND cold-treated plants showed a general downregulation of photosystem I and II genes, supporting a role of photosynthesis and chloroplasts in cold responses in anthers, which has remained elusive. Conclusions Our study revealed that a number of ethylene-related transcription factors, as putative master regulators of cold responses, were upregulated in ERY providing promising candidates to confer tolerance to susceptible cultivars. Our results also suggest that the photosynthesis machinery might be a good target to improve cold tolerance in anthers. In summary, our study provides valuable candidates for further analysis and molecular breeding for cold-tolerant rice cultivars.


2020 ◽  
Vol 11 ◽  
Author(s):  
Anna Fiorillo ◽  
Maurizio Mattei ◽  
Patrizia Aducci ◽  
Sabina Visconti ◽  
Lorenzo Camoni

2013 ◽  
Vol 40 (9) ◽  
pp. 819 ◽  
Author(s):  
Dorothea Bartels ◽  
Challabathula Dinakar

Salinity is one of the major abiotic stress factors that drastically reduces agricultural productivity. In natural environments salinity often occurs together with other stresses such as dehydration, light stress or high temperature. Plants cope with ionic stress, dehydration and osmotic stress caused by high salinity through a variety of mechanisms at different levels involving physiological, biochemical and molecular processes. Halophytic plants exist successfully in stressful saline environments, but most of the terrestrial plants including all crop plants are glycophytes with varying levels of salt tolerance. An array of physiological, structural and biochemical adaptations in halophytes make them suitable models to study the molecular mechanisms associated with salinity tolerance. Comparative analysis of plants that differ in their abilities to tolerate salinity will aid in better understanding the phenomenon of salinity tolerance. The halophyte Thellungiella salsuginea has been used as a model for studying plant salt tolerance. In this review, T. salsuginea and the glycophyte Arabidopsis thaliana are compared with regards to their biochemical, physiological and molecular responses to salinity. In addition recent developments are presented for improvement of salinity tolerance in glycophytic plants using genes from halophytes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junliang Zhou ◽  
Lijuan Wang ◽  
Tujian Xiao ◽  
Zhuang Wang ◽  
Yongya Mao ◽  
...  

In this study, the physiological response of the annual branches of three varieties of pitaya (Xianmi, Fulong, and Zihonglong) in cold stress was investigated using a multivariate statistical method. Physiological change results showed that cold stress could decrease the moisture and chlorophyll contents, on the contrary, increase the relative electric conductivity, the contents of malonadehyde, soluble protein, soluble sugar, and free proline, and enhance the enzyme activities of peroxidase, superoxide dismutase, and catalase. Meanwhile, a comparative proteomic approach was also conducted to clarify the cold resistance-related proteins and pathways in annual pitaya branches. Proteomics results concluded that the cold tolerance of annual pitaya branches could be improved by modulating autophagy. Therefore, we hypothesized that an increased autophagy ability may be an important characteristic of the annual pitaya branches in response to cold stress conditions. Our results provide a good understanding of the physiological responses and molecular mechanisms of the annual pitaya branches in response to cold stress.


Author(s):  
Kazuma Katano ◽  
Takao Oi ◽  
Nobuhiro Suzuki

ABSTRUCTHeat stress can seriously impact on yield production and quality of crops. Many studies uncovered the molecular mechanisms that regulate heat stress responses in plants. Nevertheless, effects of heat stress on the morphology of plants were still not extensively studied. In this study, we observed the detailed morphological changes of reproductive organs in Arabidopsis thaliana caused by heat stress. Larger area of stigma, and shorter length of anthers, filaments and petals were observed in plants subjected to heat stress compared to those under controlled conditions. Scanning electron microscopy (SEM) observation showed that length of stigmatic papillae without pollens seemed to be longer than that with pollens. In addition, classification of stigmas based on pollen attachment patterns together with artificial pollination assay revealed that pollen attachment onto stigma was clearly decreased by heat stress, and indicated that heat induced elongation of stigmatic papillae might be associated with disturbance of pollen attachment onto stigma. Furthermore, histochemical staining experiments revealed that crosstalk between Ca2+ and NO derived from pollens and O2− derived from stigma might be associated with morphological alteration of stigma.


2020 ◽  
Author(s):  
Heying Zhou(Former Corresponding Author) ◽  
Xiaoming Pang(New Corresponding Author) ◽  
Ying He ◽  
Yongsheng Zhu ◽  
Meiyu Li ◽  
...  

Abstract Background Low temperature is a major factor influences the growth and development of Chinese jujube ( Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms for coping with different freezing stress conditions in jujube. To gain insight into the freezing-related molecular changes, we conducted comparative transcriptome analyses from the cold-sensitive cultivar ‘Dongzao’ and cold-tolerant cultivar ‘Jinsixiaozao’ using RNA-Seq. Results In our study, more than 20,000 genes were detected at chilling (4°C) and freezing (-10°C, -20°C, -30°C and -40°C) stress between two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars was 1831, 2030, 1993, 1845 and 2137 under the five treatments, respectively. Functional enrichment analysis suggested that metabolic pathway, response to stimulus and catalytic activity were significantly enriched at stronger freezing stress. Among them, nine DEGs participated in the pathway of Ca 2+ signal, thirty-two DEGs were identified to take part in sucrose metabolism, and other DEGs were identified to participate in the regulation of ROS, plant hormones and antifreeze protein. In addition, important transcription factors ( WRKY , AP2 / ERF , NAC and bZIP ) participating in the freezing stress were activated under different degrees of freezing stress. Conclusions Our research provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome levels in Z. jujuba , especially two cultivars with different cold tolerance. These results expanding our understanding on the complex molecular mechanism of jujube, which also provide new insights and candidate genes for genetic improvement of jujube tolerance to freezing stress.


Sign in / Sign up

Export Citation Format

Share Document