scholarly journals Impact of ABCG2 Gene Polymorphism on the Predisposition to Psoriasis

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1601
Author(s):  
Yu-Huei Huang ◽  
Lai-Chu See ◽  
Ya-Ching Chang ◽  
Wen-Hung Chung ◽  
Lun-Ching Chang ◽  
...  

Psoriasis is a chronic inflammatory disease which is caused by the interaction between genetic and environmental factors. Evidence shows an association of psoriasis with co-morbidities including cardiovascular diseases, metabolic syndrome and hyperuricemia. Genome-wide association studies have revealed that the ABCG2 gene encoding ATP-binding cassette G2 protein was associated with inflammation and higher serum urate concentrations. In this study, we aimed to evaluate the role of ABCG2 gene polymorphisms on the susceptibility to psoriasis. The genotype distribution of two ABCG2 single nucleotide polymorphisms (SNPs), rs2231142 and rs2231137, was examined in 410 psoriasis patients and 1,089 gender-matched non-psoriasis controls. We found that heterozygotes (GT) for rs2231142 was associated with a decreased risk of psoriasis (p = 0.001; adjusted OR = 0.532; 95% CI, 0.370–0.765) after adjusting for age, as compared with homozygotes for the major allele (GG). Subjects who carried at least one polymorphic allele (homozygote or heterozygote for the minor allele) were less susceptible to psoriasis (p = 0.002; adjusted OR = 0.594; 95% CI, 0.249–0.823) and bearing higher serum urate levels (p = 0.026) than those homozygous for the major allele. Our results indicated that the ABCG2 gene polymorphism was associated with the risk of psoriasis.

2019 ◽  
Author(s):  
Nana Liu ◽  
Jeffrey Hsu ◽  
Gautam Mahajan ◽  
Han Sun ◽  
John Barnard ◽  
...  

ABSTRACTRationaleAtrial fibrillation (AF) genome-wide association studies (GWAS) identified significant associations for rs1152591 and linked variants in the SYNE2 gene encoding the nesprin-2 protein that connects the nuclear membrane with the cytoskeletonObjectiveDetermine the effects of the AF-associated rs1152591 and rs1152595, two linked intronic single nucleotide polymorphisms (SNPs), on SYNE2 expression and investigate the mechanisms for their association with AF.Methods and ResultsRNA sequencing of human left atrial appendage (LAA) tissues indicated that rs1152591 and rs1152595 were significantly associated with the expressions of SYNE2α1, a short mRNA isoform, without an effect on the expression of the full-length SYNE2 mRNA. SYNE2α1 mRNA uses an alternative transcription start site and encodes an N-terminal deleted 62 kDa nesprin-2α1 isoform, which can act as a dominant-negative on nuclear-cytoskeleton connectivity. Western blot and qPCR assays confirmed that AF risk alleles of both SNPs were associated with lower expression of nesprin-2α1 in human LAA tissues. Reporter gene transfections demonstrated that the risk vs. reference alleles of rs1152591 and rs1152595 had decreased enhancer activity. SYNE2 siRNA knockdown (KD) or nesprin-2α1 overexpression studies in human stem cell-derived induced cardiomyocytes (iCMs) resulted in ~12.5 % increases in the nuclear area compared to controls (p<0.001). Atomic force microscopy demonstrated that SYNE2 KD or nesprin-2α1 overexpression led to 57.5% or 33.2% decreases, respectively, in nuclear stiffness compared to controls (p< 0.0001).ConclusionsAF-associated SNPs rs1152591 and rs1152595 downregulate the expression of SYNE2α1, increasing nuclear-cytoskeletal connectivity and nuclear stiffness. The resulting increase in mechanical stress may play a role in the development of AF.


2021 ◽  
Vol 36 (4) ◽  
pp. 570-576
Author(s):  
Hala Gaballah ◽  
Reham Abd-elkhalek ◽  
Ola Hussein ◽  
Shimaa Abd El-wahab

Objectives: This study aims to investigate the association of the tumor necrosis factor-alpha inducible protein 3 (TNFAIP3) (rs5029939) gene single nucleotide polymorphism (SNP) with the risk of systemic lupus erythematosus (SLE) and its clinical manifestations in a cohort of SLE patients. Patients and methods: This study included a total of 180 participants (18 males, 72 females; mean age: 30.9±10.1 years; range 17 to 59 years) including 90 SLE patients and 90 healthy controls between March 2017 and February 2020. The TNFAIP3 rs5029939 gene polymorphism was identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in all participants. Results: There was a significant difference in genotype distribution of the TNFAIP3 rs5029939 SNP between SLE patients and healthy controls, where CG genotype was more common in SLE patients (53.3%) than controls (11.1%) (p=0.001). We found a significant difference in G allele frequency of TNFAIP3 (rs5029939) (37.8% with SLE vs. 5.6% with controls, p=0.001). Genotype CG was significantly associated with lupus nephritis and neuropsychiatric manifestations (p<0.05). Although the response to treatment was numerically higher with the genotype CC, it did not reach statistical significance (p=0.4). Conclusion: Our study suggests that TNFAIP3 rs5029939 gene polymorphism is associated with SLE susceptibility and may have an impact on its clinical phenotype. As such association differs among populations of diverse ethnic backgrounds, larger genome-wide association studies are warranted to further elucidate genetic associations.


Author(s):  
NV Eliseeva ◽  
IV Ponomarenko ◽  
MI Churnosov

Primary open-angle glaucoma (POAG) is a complex disorder. Genetic factors play a vital part in POAG. The prevalence of POAG is gender-specific: the disorder is more often diagnosed in women. Results of the genome-wide association studies (GWAS) strongly support the association of CDKN2B-AS1 gene polymorphism with POAG. The aim was to perform the replicative study of CDKN2B-AS1 gene polymorphic loci association with POAG in women of the Central Black Earth Region, Russia. Five CDKN2B-AS1 gene single nucleotide polymorphisms (SNP), rs1063192, rs7865618, rs2157719, rs944800, and rs4977756, were genotyped in 290 female patients with POAG and 220 female controls. The differences in the haplotype block structure between the POAG patients (no haplotype blocks) and the controls (haplotype block consisting of three SNPs, rs1063192, rs7865618 and rs2157719, was detected) for the set of studied CDKN2B-AS1 SNPs were revealed using the Solid Spine algorithm (D’ > 0.8). CDKN2B-AS1 gene haplotype GGG rs1063192–rs7865618–rs2157719 is associated with POAG in women. This haplotype is considered a protective factor of the disorder (OR = 0.66; p = 0.006, рperm = 0.037).


Cephalalgia ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Carolina C Burgos-Vega ◽  
David Dong-Uk Ahn ◽  
Christina Bischoff ◽  
Weiya Wang ◽  
Dan Horne ◽  
...  

Background Migraine headache is a neurological disorder affecting millions worldwide. However, little is known about the mechanisms contributing to migraine. Recent genome-wide association studies have found single nucleotide polymorphisms in the gene encoding transient receptor potential channel M8. Transient receptor potential channel M8 is generally known as a cold receptor but it has been implicated in pain signaling and may play a role in migraine pain. Methods In order to investigate whether transient receptor potential channel M8 may contribute to the pain of migraine, the transient receptor potential channel M8 activator icilin was applied to the dura mater using a rat behavioral model of headache. Cutaneous allodynia was measured for 5 hours using Von Frey filaments. Results : Dural application of icilin produced cutaneous facial and hind paw allodynia that was attenuated by systemic pretreatment with the transient receptor potential channel M8-selective antagonist AMG1161 (10 mg/kg p.o.). Further, the anti-migraine agent sumatriptan (0.6 mg/kg s.c.) or the non-selective NOS inhibitor L-NAME (20 mg/kg i.p.) also attenuated allodynia when given as a pretreatment. Conclusions These data indicate that transient receptor potential channel M8 activation in the meninges produces behaviors in rats that are consistent with migraine and that are sensitive to pharmacological mechanisms known to have efficacy for migraine in humans. The findings suggest that activation of meningeal transient receptor potential channel M8 may contribute to the pain of migraine.


2020 ◽  
Vol 21 (6) ◽  
pp. 466-470
Author(s):  
Emine Kandemis ◽  
Gulten Tuncel ◽  
Ozen Asut ◽  
Sehime G. Temel ◽  
Mahmut C. Ergoren

Background: The use of psychoactive substances is one of the most dangerous social problems worldwide. Nicotine dependence results from the interaction between neurobiological, environmental and genetic factors. Serotonin is a neurotransmitter that has a wide range of central nervous system activities. The serotonin transporter gene has been previously linked to psychological traits. Objective: A variable number of tandem repeats within the serotonin transporter-linked polymorphic gene region are believed to alter the transcriptional efficiency of the 5-HTT gene. Therefore, we aimed to investigate the association between this polymorphic site and smoking behavior in the Turkish Cypriot population. Methods: A total of 259 (100 smokers, 100 non-smokers and 59 ex-smokers) Turkish Cypriots were included in this population-based cross-sectional study. Genomic DNA was extracted from peripheral blood samples and the 5-HTTVNTR2 polymorphisms were determined by the PCR-RFLP. Results: The allelic frequency and genotype distribution results of this study showed a strong association (P<0.0001) between smokers and non-smokers. No statistical significance was found between non-smokers and ex-smokers. Conclusion: This is the first genetic epidemiology study to investigate the allelic frequencies of 5-HTTVNTR2 polymorphisms associated with smoking behavior in the Turkish Cypriot population. Based on the results of this study, genome-wide association studies should be designed for preventive medicine in this population.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 772
Author(s):  
João Botelho ◽  
Vanessa Machado ◽  
José João Mendes ◽  
Paulo Mascarenhas

The latest evidence revealed a possible association between periodontitis and Parkinson’s disease (PD). We explored the causal relationship of this bidirectional association through two-sample Mendelian randomization (MR) in European ancestry populations. To this end, we used openly accessible data of genome-wide association studies (GWAS) on periodontitis and PD. As instrumental variables for periodontitis, seventeen single-nucleotide polymorphisms (SNPs) from a GWAS of periodontitis (1817 periodontitis cases vs. 2215 controls) and eight non-overlapping SNPs of periodontitis from an additional GWAS for validation purposes. Instrumental variables to explore for the reverse causation included forty-five SNPs from a GWAS of PD (20,184 cases and 397,324 controls). Multiple approaches of MR were carried-out. There was no evidence of genetic liability of periodontitis being associated with a higher risk of PD (B = −0.0003, Standard Error [SE] 0.0003, p = 0.26). The eight independent SNPs (B = −0.0000, SE 0.0001, p = 0.99) validated this outcome. We also found no association of genetically primed PD towards periodontitis (B = −0.0001, SE 0.0001, p = 0.19). These MR study findings do not support a bidirectional causal genetic liability between periodontitis and PD. Further GWAS studies are needed to confirm the consistency of these results.


2021 ◽  
Vol 14 (4) ◽  
pp. 287
Author(s):  
Courtney M. Vecera ◽  
Gabriel R. Fries ◽  
Lokesh R. Shahani ◽  
Jair C. Soares ◽  
Rodrigo Machado-Vieira

Despite being the most widely studied mood stabilizer, researchers have not confirmed a mechanism for lithium’s therapeutic efficacy in Bipolar Disorder (BD). Pharmacogenomic applications may be clinically useful in the future for identifying lithium-responsive patients and facilitating personalized treatment. Six genome-wide association studies (GWAS) reviewed here present evidence of genetic variations related to lithium responsivity and side effect expression. Variants were found on genes regulating the glutamate system, including GAD-like gene 1 (GADL1) and GRIA2 gene, a mutually-regulated target of lithium. In addition, single nucleotide polymorphisms (SNPs) discovered on SESTD1 may account for lithium’s exceptional ability to permeate cell membranes and mediate autoimmune and renal effects. Studies also corroborated the importance of epigenetics and stress regulation on lithium response, finding variants on long, non-coding RNA genes and associations between response and genetic loading for psychiatric comorbidities. Overall, the precision medicine model of stratifying patients based on phenotype seems to derive genotypic support of a separate clinical subtype of lithium-responsive BD. Results have yet to be expounded upon and should therefore be interpreted with caution.


Author(s):  
Mohamed Abdulkadir ◽  
Dongmei Yu ◽  
Lisa Osiecki ◽  
Robert A. King ◽  
Thomas V. Fernandez ◽  
...  

AbstractTourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1175
Author(s):  
Amarni L. Thomas ◽  
Judith Marsman ◽  
Jisha Antony ◽  
William Schierding ◽  
Justin M. O’Sullivan ◽  
...  

The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


Sign in / Sign up

Export Citation Format

Share Document