scholarly journals Water Use and Leaf Nutrient Status for Terraced Cherimoya Trees in a Subtropical Mediterranean Environment

Horticulturae ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 46 ◽  
Author(s):  
Victor Hugo Durán-Zuazo ◽  
Dionisio Franco Tarifa ◽  
Iván Francisco García-Tejero ◽  
Saray Gutiérrez Gordillo ◽  
Pedro Cermeño Sacristan ◽  
...  

Water scarcity in many semi-arid agricultural areas, in particular for the Mediterranean basin, is promoting changes in irrigated agriculture, with alternative strategies being introduced for water-use optimization. The coast of Granada and Malaga (Southeast Spain) is an economically important area for subtropical fruit cultivation. This intensively irrigated agriculture is characterized by requiring extra amounts of water and the adoption of sustainable practices to improve agricultural water management. A two-season experiment was conducted to assess (1) the water use in terraced cherimoya (Annona cherimola Mill. cv. Fino de Jete) orchards under conventional and organic production systems with drainage lysimeters, and (2) the impact on fruit yield and nutritional effects between the two considered production systems. Crop coefficient (Kc) values for cherimoya were 0.60–0.66, 0.64–0.71, and 0.48–0.62 at flowering, fruit set, and fruit growth, respectively. Fruit yield was similar in both systems, ranging from 47.1 for conventional to 44.1 kg tree−1 for organic farming, averaging 13.2 and 12.3 t·ha−1, respectively. No differences between these systems were observed in terms of leaf nutrient status, with variations in the N, P, and K contents during the different phenological stages. The N, P, and K lessen during flowering and fruit growth; the highest levels of these nutrients were fixed at harvest. These patterns were the opposite in Ca and Mg, ascribable to the antagonism between K and both Ca and Mg. Thus, these findings highlight the need to establish the optimal use of irrigation water with respect to crop requirements, thereby encouraging sustainable subtropical farming in terraces.

Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 286 ◽  
Author(s):  
Donald M. Broom

This analysis, using published data, compared all land and conserved water use in four beef production systems. A widespread feedlot system and fertilised irrigated pasture systems used similar amounts of land. However, extensive unmodified pasture systems used three times more land, and semi-intensive silvopastoral systems used four times less land, so the highest use was 13 times the lowest. The amount of conserved water used was 64% higher in feedlots with relatively intensive rearing systems than in fertilised irrigated pasture; in extensive unmodified pasture systems, it was 38% and in semi-intensive silvopastoral systems, it was 21% of the fertilised irrigated pasture value, so the highest use was eight times the lowest. If there was no irrigation of pasture or of plants used for cattle feed, the feedlot water use was 12% higher than the fertilised pasture use and 57% higher than that in semi-intensive silvopastoral systems. These large effects of systems on resource use indicate the need to consider all systems when referring to the impact of beef or other products on the global environment. Whilst the use of animals as human food should be reduced, herbivorous animals that consume food that humans cannot eat and are kept using sustainable systems are important for the future use of world resources.


2003 ◽  
Vol 2003 ◽  
pp. 238-238
Author(s):  
M. Hovi

According to the EC Regulation 1804/99, health and welfare of organic livestock should be promoted primarily by preventive measures using appropriate breeds, feeds and feeding practices and husbandry techniques for the species in question and by implementing stable social conditions for breeding animals (CEC, 1999). Whilst the EC Regulation on organic livestock production came into force fairly recently in August 2000 and has hardly had a chance to have an impact on existing organic production systems, there is a growing body of epidemiological evidence on the impact of organic management on the health and welfare of livestock. Furthermore, a three-year networking project, the Network for Animal Health and Welfare in Organic Agriculture (NAHWOA), between 17 institutes from 13 different EU countries has recently published their conclusions and recommendations on animal health and welfare in organic production systems (Anon, 2002). A recent review of literature (Hovi et al., in press) and the NAHWOA conclusions suggest that animal health situation in organic livestock systems is similar to that found in conventional systems. Some differences in the prevalence of different conditions exist. A typical example of higher dry period but lower lactation period levels of mastitis in organic than in conventional systems is presented in Figure 1. It has been suggested that the minimal organic standards and their implementation via certification procedure are likely to provide several preconditions for good living conditions for farm animals (Sundrum, 2001), and the NAHWOA concludes that the current evidence supports the claim that organic livestock production often provides better welfare than conventional production systems, particularly by providing more freedom for species-specific behaviour for livestock. It has, however, been suggested that the organic standards do not necessarily provide a balanced approach to animal welfare and that some conflicts between welfare aims and other organic farming objectives may exist (Anon, 2002). An example of how experts perceive the impact of organic standards on animal welfare is given in Figure 2.


2007 ◽  
Vol 47 (1) ◽  
pp. 71 ◽  
Author(s):  
R. J. Hutton ◽  
J. J. Landsberg ◽  
B. G. Sutton

This paper addresses the question of whether a citrus crop has the same need for water at all stages of development or whether it is possible to withhold water at times when the crop is less sensitive to water stress, thus, reducing total water use and improving water use efficiency while still maintaining yield. To answer this question water applied by irrigation was reduced by up to 33% relative to standard full irrigation by extending the intervals between applications from 3 to 17 days during fruit growth stages II and III in the annual growth cycle. As expected, the longer intervals resulted in greater depletion in soil moisture and significant water stress developed as soil water deficits approached the lower limits of plant available water. Stressed trees exhibited mean pre-dawn water potential (ψl) values of –0.93 MPa and midday ψl values decreased to between –2.0 and –2.5 MPa. Periodic soil water deficits in late summer and autumn reduced shoot growth, but fruit yield was unaffected, and there was no evidence of reduced canopy size. Water use efficiency (mass of fruit produced per unit water applied) improved, but fruit growth was extremely sensitive to moisture stress and extended irrigation intervals in summer and autumn reduced fruit size. Fruit juice quality was also affected, as there was an increase in both total soluble solids and juice acidity, but the practical consequences of these were limited because there were only small changes to the sugar : acid ratios. This work has demonstrated that deficient irrigation during summer can be used to manipulate growth and reduce water use, but at the risk of a marginal reduction in fruit size.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1230 ◽  
Author(s):  
Maria do Rosário Cameira ◽  
Luís Santos Pereira

The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.


2022 ◽  
Vol 32 (1) ◽  
pp. 21-27
Author(s):  
Osama Mohawesh ◽  
Ammar Albalasmeh ◽  
Sanjit Deb ◽  
Sukhbir Singh ◽  
Catherine Simpson ◽  
...  

Colored shading nets have been increasingly studied in semi-arid crop production systems, primarily because of their ability to reduce solar radiation with the attendant reductions in air, plant, and soil temperatures. However, there is a paucity of research concerning the impact of colored shading nets on various crops grown under semi-arid environments, particularly the sweet pepper (Capsicum annum) production system. This study aimed to investigate the effects of three colored shading net treatments (i.e., white, green, and black shading nets with 50% shading intensity and control with unshaded conditions) on the growth and instantaneous water use efficiency (WUE) of sweet pepper. The results showed that all colored shading nets exhibited significantly lower daytime air temperatures and light intensity (22 to 28 °C and 9992 lx, respectively) compared with the control (32 to 37 °C and 24,973 lx, respectively). There were significant differences in sweet pepper growth performance among treatments, including plant height, shoot dry weight, leaf area, leaf chlorophyll content, and vitamin C in ripened fruit. The enhanced photosynthetic rates were observed in sweet pepper plants under the colored shading nets compared with control plants. WUE increased among the colored shading net treatments in the following order: control ≤ white < black < green. Overall, the application of green and black shading nets to sweet pepper production systems under semi-arid environments significantly enhanced plant growth responses and WUE.


2021 ◽  
Author(s):  
Ανδρέας Ροπόκης

The nutrient to water uptake ratios, henceforth termed “uptake concentrations” (UC), remain relatively constant over time under similar climatic conditions for a particular plant species and developmental stage. Under greenhouses with low temperature (LT) conditions, the uptake of nutrients may be altered in a different manner than that of the water and thus their UC may be different than in greenhouses with standard temperature (ST) conditions. In the Mediterranean regions, sweet pepper is frequently cultivated in unheated greenhouses in which the temperature during the winter may drop to suboptimal or even lower levels. In these areas, the available irrigation water frequently contains sodium chloride but also calcium bicarbonate, which at excessively high concentrations in closed hydroponic crops can impose Ca accumulation in the recycled NS and concomitantly negatively affect fruit yield and quality of the produce.Taking the above into consideration there were established three studies:In the first study, pepper plants of the cultivars ‘Sammy’ and ‘Orangery’, self-grafted or grafted onto two commercial rootstocks ('Robusto' and 'Terrano'), were cultivated in a greenhouse under either ST or LT conditions. The aim of the study was to test the impact of grafting and greenhouse temperature on total yield, water use efficiency and nutrient uptake. The LT regime reduced yield by about 50% in ‘Sammy’ and 33% in ‘Orangery’, irrespective of the grafting combination. Grafting of ‘Sammy’ onto both 'Robusto' and 'Terrano' increased the total fruit yield by 39% and 34% compared with the self-grafted control, while grafting of ‘Orangery’ increased yield only when the rootstock was ‘Terrano’. The yield increase resulted exclusively from enhancement of the fruit number per plant. Both the water consumption and the water use efficiency were suppressed by the LT regime but the temperature effect interacted with the rootstock/scion combination. The LT increased the UC of K, Ca, Mg, N, and Mn, while it decreased strongly that of P and slightly the UC of Fe, and Zn. The UC of K and Mg were influenced by the rootstock/scion combination but this effect interacted with the temperature regime. In contrast, the Ca, N, and P concentrations were not influenced by the grafting combination. The results of the present study show that the impact of grafting on yield and nutrient uptake in pepper depend not merely on the rootstock genotype but on the rootstock/scion combination.In the second study, mean UC of macro- and micronutrients were determined during five developmental stages in different pepper cultivars grown in a closed hydroponic system by measuring the water uptake and the nutrient removal from the RNS. The experiment was conducted in a Mediterranean environment and the tested cultivars were ‘Orangery’, ‘Bellisa’, ‘Sondela’, ‘Sammy’ self-grafted and ‘Sammy’ grafted onto the commercial rootstock `RS10'. ‘Sondela’ exhibited significantly higher ΝΟ3, Μg, Ca and B UC in comparison with all other cultivars, while Bellisa exhibited higher K UC. The UC of all nutrients were similar in the grafted and the non-grafted ‘Sammy’ plants. The UC of macronutrients estimated in the second study (mmol L-1) ranged from 2.4 to 3.7 for Ca, 1.0 to 1.5 for Mg, 6.2 to 9.0 for K, 11.7 to 13.7 for N, and 0.7 to 1.1 for P. The UC of N, K, Ca and Mg were appreciably higher than the corresponding values found under Dutch climatic conditions, while that of P was similar in both environments during the vegetative stage and higher thereafter. The UC of Fe, Zn and B tended to decrease with time, while that of Mn increased initially and subsequently decreased slightly during the reproductive developmental stage.In the third study, irrigation water containing 1.5, 3.0, 4.5 and 6.0 mM was used to prepare NS in a closed hydroponic crop of sweet pepper cultivated in RNS. The aim of the study was to determine maximum Ca levels that do not harm the crop and to simulate the pattern of Ca accumulation when the Ca concentration in the irrigation water is excessive. At 1.5 mM Ca, no Ca accumulation was observed in the RNS, while at 3.0, 4.5 and 6.0 mM the Ca concentration in the RNS, and concomitantly in the root environment, increased to 17, 28 and 37 mM, corresponding to 6.4, 9.0 and 10.8 dS m-1. The accumulation of Ca in the RNS affected both tissue nutrient concentrations and UC of Ca, S and Mg, but this was not the case for N and K. Growth, yield and plant water uptake were restricted at moderate and high external Ca levels. Our results showed that in soilless sweet pepper crops with zero discharge of fertigation effluents, the Ca concentration in the irrigation water should be lower than 3.0 mM to avoid yield restrictions due to salinity.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1879 ◽  
Author(s):  
Borrego-Marín María M. ◽  
Expósito A. ◽  
Berbel J.

This study describes an economic model in the Guadalquivir river basin (Southern Spain) that considers inter-sectoral and hydrological effects of changes in water use as a response to various water-pricing policy scenarios. The main economic variables include water use, gross regional product, return flows in the river basin, and employment at sectoral and basin levels. The response of the different sectors to water pricing and of the sectoral productivity is derived from official data. The background of the model is based on previous research for the implementation of the UN System of Environmental-Economic Accounts and on the application of this framework to the Guadalquivir basin. Results based on the elicited curves illustrate that the structure of the demand function for irrigated agriculture passes from inelastic to elastic sections, while the function corresponding to the remaining economic sectors shows a continuous decreasing function with minor change in the elasticity structure of the curve. Results show that the impact of extreme measures of water pricing reduces water abstraction by up to 42% vs. the baseline scenario, with an economic reduction in regional Gross Domestic Product (GDP) of 1%.


2008 ◽  
Vol 133 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Jer-Chia Chang ◽  
Tzong-Shyan Lin

The goal of this study was to document the relationship between fruit growth patterns and flushing number in litchi (Litchi chinensis Sonn. cv. 73-S-20). The impact of flush number on fruit retention, fruit quality, and leaf efficiency (g fruit FW produced per unit of leaf area at harvest) was assessed in field-grown 6-year-old trees by adjusting the number of flushes per bearing shoot through girdling at two fruit developmental stages. The cumulative fruit growth was sigmoidal. The greatest fruit relative growth rate (RGR) occurred during 3 to 5 weeks after full bloom (AFB), peaking on week 3 at 0.39 g·g−1 dry weight (DW) per day. The greatest fruit absolute growth rate (AGR) occurred during weeks 8 to 11, peaking on week 11 at 0.16 g·d−1 DW. Fruit retention was sensitive to girdling applied during week 3. Most fruit dropped on branches with ≤ two flushes, whereas fruit continued to develop on branches with three flushes and on the controls. There was a gradual loss of fruit when the girdling was applied during week 8. The number of fruit retained on branches with two and three flushes was similar to the controls. At harvest, regardless of the time of branch girdling, fruit yield and quality increased with increasing number of flushes; shoots with three flushes were similar to ungirdled controls. Leaf efficiency on branches girdled during week 3 was inferior to that girdled during week 8. All treatments had similar leaf efficiency when branches were girdled during week 8. On the other hand, girdling treatment applied during week 3 resulted in variable leaf efficiency among treatment, indicating that fruit were utilizing reserves in bearing shoots. We concluded that bearing shoots of ‘73-S-20’ litchi trees require a minimum number of three flushes for adequate fruit production.


HortScience ◽  
2019 ◽  
Vol 54 (10) ◽  
pp. 1777-1794
Author(s):  
Bernadine C. Strik ◽  
Amanda Vance ◽  
David R. Bryla ◽  
Dan M. Sullivan

The impact of various production systems on leaf nutrient concentration and soil organic matter, pH, and nutrient status was evaluated from the first growing season (2007) through maturity (2016) in a certified organic planting of northern highbush blueberry (Vaccinium corymbosum L.). Treatments included planting method (on raised beds or flat ground), fertilizer source (granular feather meal or fish solubles) and rate (“low” and “high” rates of 29 and 57 kg·ha−1 N, respectively, during establishment, increased incrementally as the planting matured to 73 and 140 kg·ha−1 N, respectively), mulch [sawdust, yard-debris compost topped with sawdust (compost + sawdust), or black, woven polyethylene groundcover (weed mat)], and cultivar (Duke or Liberty). Mulches were replenished, as needed, and weeds were controlled throughout the study. The impacts of year, planting method, fertilizer, mulch, and cultivar on leaf and soil nutrient levels over this 10-year study were complex with many interactions among treatments. Soil pH remained within the recommended range for all treatments. Plants fertilized with fish solubles had higher leaf N, P, and K concentrations than those fertilized with feather meal, particularly at the high N rate in both cultivars. By contrast, fertilization with feather meal increased leaf Ca. Compost + sawdust added a cumulative (2007–16) total of 2274, 400, 961, and 2744 kg·ha−1 of N, P, K, and Ca, respectively, over the use of sawdust alone, and increased the concentration of P, K (as much as 90%), Ca, and Mg in the soil relative to other mulches. Soil organic matter content averaged 4.1% under compost + sawdust, 3.3% under sawdust, and 2.9% under weed mat, averaged over the last 5 years. Mulching with weed mat or compost + sawdust increased leaf K compared with sawdust in both cultivars, regardless of fertilizer treatment. Leaf Ca, on the other hand, was highest with sawdust and tended to be lowest with weed mat in both cultivars. Soil nutrient levels were not consistently correlated with leaf nutrient concentrations, other than between soil NO3-N and leaf N (5 years) and between soil and leaf K (4 years). On average, raised beds resulted in higher concentrations of N, P, K, Fe, and Al and lower concentrations of Ca, Mg, and B in the leaves than planting on flat ground. Furthermore, concentrations of N and Ca in recent fully-expanded leaves at standard sampling time was higher in young plants than in mature plants in both cultivars, whereas the opposite was found for leaf P. In ‘Duke’, yield was positively correlated with leaf Ca in 8 out of 9 years and negatively correlated with leaf K and P in 5 and 6 years, respectively. Leaf Ca and Mg were also negatively correlated with leaf K in most years for both cultivars, as was leaf N. Although leaf N concentration was higher with added compost, regardless of fertilizer source in ‘Duke’, and when fertilized with feather meal in ‘Liberty’, this was not correlated with yield. High N rates increased leaf N concentration, but did not result in greater yield. While soil and leaf tissue testing are important to help manage fertilizer programs, the lack of a consistent relationship between soil and plant nutrient status and yield was a reflection of the complicated interactions that occurred among nutrients in these organic production systems. Soil nutrient imbalances and changes in leaf nutrient concentrations associated with extended use of compost + sawdust mulch and fish solubles may lead to growth and yield problems in longer-lived plantings. In addition, the loss of organic matter under weed mat would need to be addressed in long-term plantings for sustainable production.


2011 ◽  
Vol 27 (3) ◽  
pp. 397-404 ◽  
Author(s):  
S. Jovanovic ◽  
M. Savic ◽  
S. Aleksic ◽  
D. Zivkovic

Basic principles that inform organic livestock production are reviewed in this paper, with special emphasis on milk and meat production in cattle and sheep. Research findings to date are presented on the impact of various management practices, both organic and conventional, as they effect product yield and quality. The importance of incorporating autochnochous breeds into organic milk and meat production systems is particularly emphasized. Additionally, a global overview of organic milk and meat production is given, along with an assessment of opportunities for implementing organic production systems in Serbia.


Sign in / Sign up

Export Citation Format

Share Document